Читаем Есть идея! полностью

Здесь вы видите Сьюзен, идущую в школу по другой дороге. Разумеется, ей не хотелось бы удаляться от школы. Сколькими способами можно добраться от дома Сьюзен до школы?

Сьюзен. Хотела бы я знать, сколько различных дорог ведет от моего дома к школе. Подумаем! Сосчитать их, должно быть, не просто. Впрочем… Есть идея! Сосчитать дороги совсем не трудно! Очень даже просто!

Какая идея пришла в голову Сьюзен?

Вот как она рассудила.

Сьюзен. У того перекрестка, возле которого я живу, поставлено на карте число 1: выйти из дома я могу лишь одним способом. У перекрестков, расположенных в одном квартале к востоку и к югу от дома, я поставлю по 1, потому что до каждого из них можно добраться только одним способом.

Сьюзен. У этого перекрестка я поставлю число 2, так как к нему от моего дома ведут 2 различные дороги.

Тут Сьюзен стало ясно, что число у каждого перекрестка равно либо ближайшему числу (если оно одно), либо сумме двух ближайших чисел.

Сьюзен. Еще четыре перекрестка пометила числами. Скоро закончу.

Не поможете ли вы Сьюзен? Не подскажете ли ей, сколько различных дорог ведет от ее дома к школе?

Сколько путей?

Три перекрестка на ближайшей вертикали справа следует пометить (сверху вниз) числами 1, 4, 9, а два перекрестка на следующей вертикали — числами 4 и 13. Число 13, стоящее на карте у самого правого нижнего перекрестка, показывает, что Сьюзен может выбрать кратчайшую дорогу в школу 13 различными способами.

Придуманный Сьюзен метод действительно приводит к простому и эффективному алгоритму для определения числа кратчайших путей, ведущих от ее дома к школе. Если бы Сьюзен попыталась вычертить все пути, чтобы затем пересчитать их, то решение оказалось бы весьма громоздким, а при большом числе улиц просто необозримым. Вы сможете лучше оценить эффективность предложенного Сьюзен алгоритма, если вычертите все 13 путей.

Чтобы проверить, насколько глубоко вы усвоили алгоритмы Сьюзен, попробуйте нарисовать сети улиц, имеющие другие конфигурации, и подсчитать число кратчайших путей, ведущих из точки А в точку В. Четыре задачи этого типа представлены на рис. 1. Решать их можно по-разному, например, воспользоваться комбинаторными формулами, но все методы несколько сложнее алгоритма Сьюзен.

Чему равно число кратчайших путей, по которым ладья может перейти из одного углового поля на шахматной доске в другое, диагонально противоположное? Эта задача легко решается, если каждому полю на шахматной доске приписать по числу так же, как Сьюзен приписывала числа перекресткам на карте города. Ладья ходит только по горизонтали и вертикали. Следовательно, кратчайший путь из любой клетки в любую другую состоит в преодолении разделяющего клетки расстояния по горизонтали и по вертикали. Если числа расставлены верно (см. рис. 2), то они указывают число кратчайших путей, ведущих из нижнего угла в любое поле. Например, поле в правом верхнем углу помечено числом 3432. Следовательно, ладья может перейти с поля, стоящего в левом нижнем углу доски на диагонально противоположное поле 3432 кратчайшими путями.

Разрезав шахматную доску по диагонали и повернув половину, мы получим треугольник, изображенный на рис. 3. Числа, стоящие в клетках любого ряда, указывают число кратчайших путей, ведущих в них из самой верхней клетки. Расставленные в клетках числа образуют знаменитый арифметический треугольник Паскаля, и это не удивительно: алгоритм для подсчета числа кратчайших путей, ведущих от вершины, в точности совпадает с процедурой построения треугольника Паскаля. Этот изоморфизм позволяет считать исходную головоломку прологом к изучению необычайно разнообразных и красивых свойств треугольника Паскаля.

Треугольник Паскаля позволяет находить биномиальные коэффициенты (то есть коэффициенты при любом члене разложения (a + b)n, где n — любое целое число) и решения многих задач элементарной теории вероятностей. Заметим, что на рис. 3 число кратчайших путей, ведущих из вершины треугольника в самую левую или самую правую клетку нижнего ряда, равно 1 и что по мере приближения к середине ряда число кратчайших путей возрастает. Возможно, вам случалось видеть одно из устройств, действие которых основано на свойствах треугольника Паскаля: по наклонной доске, в которую в шахматном порядке вбиты колышки, скатываются шарики и скапливаются в отсеках под колышками нижнего ряда. Распределение шариков имеет форму колоколообразной кривой, а число шариков в каждом отсеке пропорционально соответствующему биномиальному коэффициенту, потому что число кратчайших путей, ведущих в каждый отсек, в точности совпадает с определенным биномиальным коэффициентом.

Перейти на страницу:

Все книги серии Математическая мозаика

Как же называется эта книга?
Как же называется эта книга?

Книга американского профессора Р. Смаллиана, написанная в увлекательной форме, продолжает серию книг по занимательной математике и представляет собой популярное введение в некоторые проблемы математической логики. Сюда входят более 200 новых головоломок, созданных необычайно изобретательным автором. Задачи перемежаются математическими шутками, анекдотами из повседневной жизни и неожиданными парадоксами. Завершает книгу замечательная серия беллетризованных задач, которые вводят читателя в самую суть теоремы Курта Гёделя о неполноте, — одного из замечательнейших результатов математической логики 20 века.Можно сказать — вероятно, самый увлекательный сборник задач по логике. Около трехсот задач различной сложности сгруппированы по разделам, герои которых Рыцари и Лжецы, Алиса в Стране Чудес, Беллини и Челлини и даже сам граф Дракула! Если человек произносит «Я лгу» — говорит ли он неправду? Почему физики и математики по-разному решают задачи? Как вовремя распознать упыря? Ответы на эти и более серьезные вопросы Вы найдете в этом сборнике, а может быть, и ответ на вопрос «Как же называется эта книга?». Для всех, кто хочет научиться рассуждать.

Рэймонд Меррилл Смаллиан

Научная литература

Похожие книги

100 великих загадок Африки
100 великих загадок Африки

Африка – это не только вечное наследие Древнего Египта и магическое искусство негритянских народов, не только снега Килиманджаро, слоны и пальмы. Из этой книги, которую составил профессиональный африканист Николай Непомнящий, вы узнаете – в документально точном изложении – захватывающие подробности поисков пиратских кладов и леденящие душу свидетельства тех, кто уцелел среди бесчисленных опасностей, подстерегающих путешественника в Африке. Перед вами предстанет сверкающий экзотическими красками мир африканских чудес: таинственные фрески ныне пустынной Сахары и легендарные бриллианты; целый народ, живущий в воде озера Чад, и племя двупалых людей; негритянские волшебники и маги…

Николай Николаевич Непомнящий

Приключения / Научная литература / Путешествия и география / Прочая научная литература / Образование и наука
Агрессия
Агрессия

Конрад Лоренц (1903-1989) — выдающийся австрийский учёный, лауреат Нобелевской премии, один из основоположников этологии, науки о поведении животных.В данной книге автор прослеживает очень интересные аналогии в поведении различных видов позвоночных и вида Homo sapiens, именно поэтому книга публикуется в серии «Библиотека зарубежной психологии».Утверждая, что агрессивность является врождённым, инстинктивно обусловленным свойством всех высших животных — и доказывая это на множестве убедительных примеров, — автор подводит к выводу;«Есть веские основания считать внутривидовую агрессию наиболее серьёзной опасностью, какая грозит человечеству в современных условиях культурноисторического и технического развития.»На русском языке публиковались книги К. Лоренца: «Кольцо царя Соломона», «Человек находит друга», «Год серого гуся».

Вячеслав Владимирович Шалыгин , Конрад Захариас Лоренц , Конрад Лоренц , Маргарита Епатко

Фантастика / Самиздат, сетевая литература / Научная литература / Ужасы и мистика / Прочая научная литература / Образование и наука / Ужасы