Предположим, что у нас имеется некоторое число ячеек, в которые можно помещать одинаковые предметы в любом количестве.
Рис. 17. Схема возможных распределений шариков по ячейкам
В самом простом случае будем иметь дело всего с двумя ячейками и с четырьмя шариками, которые можно произвольно раскладывать по этим ячейкам. Обозначим ячейки как А и Б, а шарики пронумеруем – 1, 2, 3 и 4. Как можно распределить четыре шарика по двум ячейкам? На первом этапе мы не будем принимать во внимание номера шариков, а просто посмотрим, сколько их в каждой ячейке (рис. 17).
Легко убедиться в том, что существует пять вариантов расположения шариков. Обозначим их как состояния I, II, III, IV и V. Теперь обратим внимание на номера шариков и будем учитывать не только,
А теперь сравним вероятности того, что при случайном перемешивании шариков реализуется какое-либо из пяти возможных макросостояний. Вспомним сведения, которые мы получили ранее. Вероятность события определяется отношением числа благоприятных событий к общему числу возможных событий. В данном случае общее число событий равно 1 + 4 + 6 + 4 + 1 = 16, т. е. четыре шарика можно распределить по двум ячейкам шестнадцатью способами. Поскольку состояния I и V можно реализовать единственным способом, вероятность того, что все шарики окажутся в ячейке А, так же как и вероятность того, что все они попадут в ячейку Б, будет равна 1
∕16. Вероятность того, что в ячейке А (или Б) окажется один шарик, а остальные попадут в другую ячейку, равна 4/16. Вероятность же того, что шарики расположатся равномерно, по два в каждой ячейке, составит 6/16. Можно подсчитать эти вероятности для любого числа ячеек и для любого числа шариков (или молекул), и всякий раз мы будем убеждаться в том, что чем равномернее распределены предметы по ячейкам, тем вероятнее такое распределение. В этом нетрудно убедиться на любом примере. Насыплем в стакан с водой немного сахарного песка.Сначала наибольшая концентрация сахарного сиропа будет возле дна стакана, но со временем сахар растворится, и концентрация выравняется по всему объёму.
Рис. 18. Реализация состояния III
Представить, что молекулы сахара самопроизвольно соберутся в некоторой части сосуда, практически невозможно, потому что вероятность такого события ничтожно мала.
Таким образом, вероятность состояния с равномерным распределением оказывается наибольшей по сравнению со всеми другими возможными состояниями, и все естественные процессы направлены в сторону достижения этого наиболее вероятного состояния. Но мы также знаем, что в результате всех природных процессов происходит увеличение энтропии. Напрашивается вывод, что между вероятностью существования данного состояния и энтропией должна существовать связь. Эта связь действительно существует, и впервые её охарактеризовал Л. Больцман. Он имел в виду термодинамические процессы, а мы будем рассуждать в рамках наших ячеек и шариков.
Будем называть, как это сделал Больцман, наши состояния I–V
где
Евгений Николаевич Колокольцев , Коллектив авторов , Ольга Борисовна Марьина , Сергей Александрович Леонов , Тамара Федоровна Курдюмова
Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Языкознание / Книги Для Детей / Образование и наука