Читаем Естествознание. Базовый уровень. 11 класс полностью

Следовательно, информация равна степени, в которую надо возвести 2 для того, чтобы получить N, т. е.

J = log2N.

Эта величина называется логарифмом N по основанию 2 или двоичным логарифмом числа N.

Конечно, число возможных вариантов правильного ответа необязательно должно быть целой степенью числа 2. Это не должно нас смущать, потому что количество информации необязательно должно выражаться целым числом.


Таблица 1

Зависимость количества полученной информации от вероятности правильности ответа


Например, если число вариантов равно пятидесяти, то, когда мы узнаем единственный правильный ответ, полученная информация будет равна степени, в которую надо возвести двойку для того, чтобы получить число 50. Нетрудно выяснить, что эта информация будет равна с точностью до третьего знака 5,644 бита.

Полученная формула информации практически в точности соответствует формуле Больцмана для энтропии (§ 8). Напрашивается предположение, что между энтропией и информацией существует большое сходство.

Рассмотрим этот вопрос подробнее. От чего зависит максимальная информация, которую можно получить, установив абсолютно точный ответ на поставленный вопрос? Чем более неопределённым было наше знание, чем меньше была вероятность угадать правильный ответ, тем большую информацию содержит сообщение, из которого мы этот ответ узнаем. По сути, наибольшая информация, которую мы можем получить из сообщения, равна количеству нашего первоначального незнания правильного ответа. Это первоначальное незнание можно измерить энтропией по той же формуле, по которой измеряется информация. Обозначив энтропию буквой Н, получаем:

H = log2N.

Мы видим, что формула такой энтропии совпадает с формулой Больцмана и, так же как и она, выражает степень беспорядка. Только если в термодинамике речь шла о беспорядке в расположении и движении молекул, то в теории информации этот беспорядок характеризует степень нашего незнания, неосведомлённости в данном вопросе, хаотичность и беспорядочность в поиске выбора верного ответа. Энтропия по существу представляет собой отрицательную информацию, и её точно так же можно измерять в битах.

Когда мы получаем сообщение, содержащее неизвестную прежде информацию, энтропия нашего незнания уменьшается. Величина этого уменьшения как раз и определяет количество полученной информации. Если до получения сообщения энтропия как мера нашего незнания была H0, а после его получения стала H1, то содержащаяся в сообщении информация будет равна H0 – H1.

Большая часть экзаменационных тестовых заданий построена так, что требуется выбрать один правильный ответ из четырёх предложенных. Если вам ничего не известно по заданному вопросу и у вас нет никаких предположений о верности любого из вариантов, то энтропия задания для вас равна двоичному логарифму четырёх, т. е. 2. Когда вы узнаете точный ответ, энтропия станет равной нулю, и вы получите два бита информации. Теперь представим себе более сложный вид теста. Предлагается пять вариантов ответов и сообщается, что три из них верны. Количество способов, которыми можно выбрать три варианта из пяти, равно десяти[4]. Энтропия этого задания, следовательно, составляет для вас log2 10, что приблизительно равно 3,3. Как видно, эта энтропия выше, чем в предыдущем случае, и решение этого теста содержит больше информации. Узнав точный ответ, вы получите 3,3 бита. Допустим, что какая-то «добрая душа» подсказала вам, что варианты ответов А и В верны. Если предположить, что вы доверяете этой подсказке, сколько бит информации вы получили? Для этого надо выяснить, какой стала для вас энтропия теста после получения подсказки. Вам теперь известно, что единственный оставшийся правильный ответ надо выбрать из вариантов Б, Г и Д, а следовательно, энтропия равна log2 3, что равняется примерно 1,6. Подсчитаем убыль энтропии, которая будет равна количеству содержащейся в подсказке информации. До получения подсказки энтропия задания была Н0 = 3,3 бита. После её получения она составила H1 = 1,6 бита. Отсюда получаем, что подсказка содержит 3,3 – 1,6 = 1,7 бита информации. Но пока вы продолжаете думать над тестом, другая «добрая душа» подсказывает, что ответ Д неверен. Сколько информации содержится в этом сообщении? Вы теперь не знаете ответа только на варианты Б и Г, один из которых верен, а другой – нет, и вероятность правильности любого ответа равна 1/2. Значит, оставшаяся энтропия теста составляет для вас 1 бит, в то время как до получения второй подсказки она равнялась 1,6 бита. А это означает, что последняя подсказка содержала 0,6 бит информации.

Проверьте свои знания

1. Какая связь существует между полученной информацией и числом необходимых вопросов, которые требуется задать для получения точного ответа?

2. Что измеряется энтропией в теории информации?

3. Как связано изменение энтропии с полученной информацией?

Задания

Перейти на страницу:

Все книги серии Вертикаль

Естествознание. Базовый уровень. 11 класс
Естествознание. Базовый уровень. 11 класс

Учебник соответствует Федеральному государственному образовательному стандарту среднего (полного) общего образования и рассчитан на преподавание предмета из расчета 3 часа в неделю.Учебник содержит сведения об основных законах и закономерностях, отражающих порядок и самоорганизацию в природе; о строении и деятельности живых систем от клетки до экосистемы; о происхождении и развитии жизни на Земле; об особенностях происхождения и развития человека, его генетике и заболеваниях; о ноосфере и технических достижениях человека.Современное оформление, многоуровневые вопросы и задания, дополнительная информация и возможность параллельной работы с электронным приложением способствуют эффективному усвоению учебного материала.Учебник адресован учащимся 11 класса.

Владислав Иванович Сивоглазов , Инна Борисовна Агафонова , Сергей Алексеевич Титов

Школьные учебники и пособия, рефераты, шпаргалки

Похожие книги

115 сочинений с подготовительными материалами для младших школьников
115 сочинений с подготовительными материалами для младших школьников

Дорогие друзья!Сочинение – это один из видов работы по развитию речи, который предполагает самостоятельное, продуманное изложение вами своих мыслей в соответствии с требуемой темой.Работа над сочинением развивает мышление, речь, позволяет выразить свой взгляд на мир. Такой вид работы способствует осознанию окружающего мира, действительности, самих себя. Кроме того, сочинение учит аргументированно доказывать и отстаивать свою точку зрения.В данном пособии вы найдёте методику написания сочинений, а также различные виды сочинений с планами и подготовительными материалами.Не забывайте, что сочинение – это прежде всего творческая работа, которая не терпит шаблона. Советуем вам не использовать представленные в пособии сочинения для бездумного, механического переписывания их в свои тетради. Наши сочинения – это возможные варианты раскрытия определённых тем, которые, надеемся, помогут вам при создании самостоятельных текстов.Желаем успехов!

Ольга Дмитриевна Ушакова

Детская образовательная литература / Школьные учебники и пособия, рефераты, шпаргалки / Книги Для Детей