Около 40 лет назад математики начали исследовать точный и гибкий эквивалент человеческого прищуривания, известный как вейвлет-анализ, или анализ формы сигнала. Этот метод применим не только к изображениям, но и к численным данным и первоначально был предложен для выделения структуры на конкретном пространственном масштабе. Вейвлет-анализ позволяет заметить лес, не обращая внимания на то, что он состоит из множества сложных деревьев и кустов.
Сначала математиками двигали в основном теоретические соображения: вейвлеты прекрасно годились для проверки научных гипотез о таких вещах, как турбулентный поток жидкости. Позже вейвлетам нашлись кое-какие чрезвычайно практические применения. В США Федеральное бюро расследований применяет вейвлеты для хранения дактилоскопических данных, и правоохранительные службы других стран следуют их примеру. Вейвлеты позволяют не просто анализировать изображения, а сжимать их.
В JPEG изображения сжимаются за счет отбрасывания информации, которая не слишком важна для человеческого зрения. Однако информация редко бывает представлена таким образом, что сразу становится очевидно, какие из битов можно считать лишними. Предположим, вы хотите отправить другу по электронной почте рисунок, сделанный на довольно грязном листе бумаги. Помимо собственно рисунка, на нем видно множество мелких черных пятнышек. Мы с вами, взглянув на этот рисунок, сразу понимаем, что эти пятнышки не важны, но сканер этого понять не может. Он просто сканирует лист, представляя изображение в виде длинной строки двоичных черно-белых сигналов, и не может определить, является ли какое-то черное пятнышко значимой частью рисунка или случайной помаркой. Некоторые «помарки», кстати говоря, могут в реальности оказаться зрачком далекой коровы или пятнышками мультяшного леопарда.
Главное препятствие заключается в том, что сигналы сканера не представляют данные об изображении в таком виде, который облегчал бы распознавание и устранение нежелательных элементов. Однако существуют и другие способы представления данных. Преобразование Фурье заменяет кривую списком амплитуд и частот, кодируя ту же самую информацию иначе. А когда данные представляются разными способами, то операции, которые сложны или невозможны в одном случае, могут стать простыми в другом. Например, вы можете взять телефонный разговор, применить к нему преобразование Фурье, а затем удалить все те части сигнала, фурье-компоненты которых имеют частоты слишком высокие или слишком низкие для человеческого уха. После этого вы можете применить к результату обратное преобразование Фурье и получить звук, идентичный с точки зрения человеческого восприятия оригиналу. Таким образом можно передавать больше разговоров по тому же каналу связи. Но в эту игру невозможно играть с оригинальным непреобразованным сигналом, поскольку у него нет «частоты» как очевидной характеристики.
Для некоторых целей метод Фурье обладает одним-единственным недостатком: синусовые и косинусовые компоненты продолжаются до бесконечности. Преобразование Фурье плохо представляет компактный сигнал. Единичный «всплеск» – простой сигнал, но для получения хотя бы умеренно убедительного всплеска требуются сотни синусов и косинусов. Проблема не в получении правильной формы всплеска, а в том, чтобы сделать все за его пределами равным нулю. Приходится избавляться от бесконечно длинных волнистых хвостов всех синусов и косинусов и, как следствие, добавлять еще более высокочастотные синусы и косинусы в отчаянной попытке компенсировать нежелательный мусор. В конечном итоге преобразованный вариант становится более сложным и требует больше данных, чем первоначальный всплеск.
Преобразование элементарных волн, или вейвлет-преобразование, полностью меняет ситуацию, поскольку использует в качестве базовых компонентов всплески (вейвлеты). Это непросто, и это нельзя сделать с любым подвернувшимся всплеском, но математику ясно, с чего следует начинать. Выбираем конкретную форму всплеска, которая будет служить материнским вейвлетом. Получаем дочерние вейвлеты (а также внучатые, правнучатые и т. д.), сдвигая материнский вейвлет вбок в различные позиции, а также расширяя или сжимая при помощи изменения масштаба. Чтобы представить более общую функцию, добавляем подходящие кратные этих вейвлетов на различных масштабах. Точно так же базовые синус и косинус фурье-преобразования являются «материнскими синусоидами», а синусы и косинусы всех остальных частот – дочерними по отношению к ним.