Читаем Это база: Зачем нужна математика в повседневной жизни полностью

К концу 2017 года при помощи этих методов теории графов было найдено 1278 потенциальных вариантов пересадки, но реализовали только 760 из них, потому что на последних этапах оценки вылезают разные проблемы: выясняется, например, что типы тканей не так хорошо совместимы, как считалось ранее, или что доноры или реципиенты по состоянию здоровья не могут выдержать операции. Однако систематическое использование алгоритмов из теории графов для эффективной организации пересадки почек – серьезный шаг вперед по сравнению с прежними методами. Кроме того, это указывает нам путь к дальнейшим усовершенствованиям, поскольку сегодня мы можем хранить почки вне тела дольше, так что все операции в цепочке не обязательно проводить в один день. Теперь можно задуматься и о более длинных цепочках, а это ставит перед нами новые математические задачи.

Я не пытаюсь утверждать, что Эйлер умел предвидеть будущее. Он, конечно, не думал, что его остроумное решение глупой головоломки когда-нибудь пригодится в медицине. И уж точно он не мог предположить, что оно найдет применение в трансплантологии – ведь в те времена хирургия не слишком отличалась от ремесла мясников. Но я хочу отдать ему должное – даже в те далекие дни он видел, что эта головоломка намекает математикам на нечто более глубокое, и прямо говорил об этом. Взгляните на эпиграф к этой главе. Эйлер неоднократно упоминает «геометрию положения» в контексте данной задачи. Это понятие он обозначает на латыни как analysis situs и отдает Лейбницу честь изобретения термина и, косвенно, осознания того, что такой предмет может оказаться важен. Самого Эйлера, очевидно, заинтриговала идея геометрии, имеющей дело не с традиционными евклидовыми фигурами. Он не отвергает эту идею из-за ее неортодоксальности, совсем наоборот. Ему приятно внести свой вклад в развитие такой геометрии. Он развлекается.

Мечта Лейбница осуществилась в XX веке после весьма существенных достижений XIX века. Мы сегодня называем эту область математики топологией, и в главе 13 я покажу некоторые ее новые применения. Теория графов по-прежнему не теряет связи с топологией, но их развитие шло разными путями. Такие понятия, как вес ребра, имеют численный, а не топологический характер. Но идея о том, что графы можно использовать для моделирования сложных взаимодействующих систем и решения задач оптимизации, восходит к Эйлеру. Он занялся вопросами нового типа потому, что они захватили его воображение, и придумал собственные способы поиска ответов на них. Произошло это в Санкт-Петербурге, в России, куда он приехал по приглашению недавно созданной Академии наук почти три столетия назад. Всякий, кому пересаживают почку, будь то в Великобритании или в любой другой стране, где пользуются методами теории графов для более эффективного распределения органов, должен восхищаться тем, что сделал Эйлер.

5

Будьте осторожны в киберпространстве

Никому еще не удалось обнаружить ни одну военную или имеющую отношение к войне задачу, которой служила бы теория чисел или теория относительности, и маловероятно, что кому-нибудь удастся обнаружить нечто подобное, на сколько бы лет мы ни заглядывали в будущее.

ГОДФРИ ХАРОЛЬД ХАРДИ.Апология математика (1940)

Пьер де Ферма знаменит своей Великой теоремой, которая гласит, что если n равно по крайней мере 3, то сумма двух n-х степеней целых чисел не может также быть n-й степенью целого числа. Эндрю Уайлс в конечном итоге нашел этому современное формальное доказательство в 1995 году, примерно 358 лет спустя после того, как Ферма высказал свою гипотезу{39}. По профессии Ферма был юристом, советником парламента в Тулузе, но большую часть времени посвящал математике. У него был друг по имени Френикль де Бесси, парижский математик, известный прежде всего полным каталогом 880 магических квадратов четвертого порядка. Они активно переписывались, и 18 октября 1640 года Ферма написал де Бесси (по-французски), что «каждое простое число делит… одну из степеней любой прогрессии за вычетом единицы, а показатель этой степени делит данное простое число за вычетом единицы».

Если перевести этот текст на алгебраический язык, то Ферма утверждал, что если p – простое число и a – произвольное число, то ap–1–1 делится на p (без остатка). Например, поскольку 17 – простое число, то, согласно его утверждению, все числа

116–1 216–1 316–1 … 1616–1 1816–1…

кратны 17. Очевидно, 1716–1 придется пропустить: это число никак не может быть кратно 17, поскольку оно на единицу меньше такого числа, а именно 1716. Ферма понимал, что такое дополнительное условие необходимо, но не упомянул этого в письме. Проверим такой случай:

Перейти на страницу:

Похожие книги

100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука
Люди на Луне
Люди на Луне

На фоне технологий XXI века полет человека на Луну в середине прошлого столетия нашим современникам нередко кажется неправдоподобным и вызывает множество вопросов. На главные из них – о лунных подделках, о техническом оснащении полетов, о состоянии астронавтов – ответы в этой книге. Автором движет не стремление убедить нас в том, что программа Apollo – свершившийся факт, а огромное желание поделиться тщательно проверенными новыми фактами, неизвестными изображениями и интересными деталями о полетах человека на Луну. Разнообразие и увлекательность информации в книге не оставит равнодушным ни одного читателя. Был ли туалет на космическом корабле? Как связаны влажные салфетки и космическая радиация? На сколько метров можно подпрыгнуть на Луне? Почему в наши дни люди не летают на Луну? Что входит в новую программу Artemis и почему она важна для президентских выборов в США? Какие технологии и знания полувековой давности помогут человеку вернуться на Луну? Если вы готовы к этой невероятной лунной экспедиции, тогда: «Пять, четыре, три, два, один… Пуск!»

Виталий Егоров (Zelenyikot) , Виталий Юрьевич Егоров

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Научно-популярная литература / Учебная и научная литература / Образование и наука
Эволюция человека. Книга III. Кости, гены и культура
Эволюция человека. Книга III. Кости, гены и культура

В третьем томе знаменитой "Эволюции человека" рассказывается о новых открытиях, сделанных археологами, палеоантропологами, этологами и генетиками за последние десять лет, а также о новых теориях, благодаря которым наше понимание собственного происхождения становится полнее и глубже. В свете новых данных на некоторые прежние выводы можно взглянуть под другим углом, а порой и предложить новые интерпретации. Так, для объяснения удивительно быстрого увеличения объема мозга в эволюции рода Homo была предложена новая многообещающая идея – теория "культурного драйва", или сопряженной эволюции мозга, социального обучения и культуры.

Александр Владимирович Марков , Елена Борисовна Наймарк

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
От болезни тела – к исцелению души. Почему мы болеем?
От болезни тела – к исцелению души. Почему мы болеем?

Все болезни имеют глубокий смысл. Они передают ценнейшие послания психики. Психолог Торвальд Детлефсен и врач Рудигер Дальке помогают нам понять, о чем свидетельствуют инфекционные заболевания, головные боли, несчастные случаи, сердечные приступы и желудочные колики, а также рак и СПИД. Если вы осознаете картину собственной болезни, то сможете найти новый прямой путь к самому себе. Болезнь не является неприятной помехой на этом пути, ибо она сама – путь. Чем сознательнее мы к ней относимся, тем лучше она выполняет свои задачи. Наша цель – не борьба с болезнью, а ее использование для исцеления души.

Рудигер Дальке , Торвальд Детлефсен

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Эзотерика / Здоровье и красота / Дом и досуг