К концу 2017 года при помощи этих методов теории графов было найдено 1278 потенциальных вариантов пересадки, но реализовали только 760 из них, потому что на последних этапах оценки вылезают разные проблемы: выясняется, например, что типы тканей не так хорошо совместимы, как считалось ранее, или что доноры или реципиенты по состоянию здоровья не могут выдержать операции. Однако систематическое использование алгоритмов из теории графов для эффективной организации пересадки почек – серьезный шаг вперед по сравнению с прежними методами. Кроме того, это указывает нам путь к дальнейшим усовершенствованиям, поскольку сегодня мы можем хранить почки вне тела дольше, так что все операции в цепочке не обязательно проводить в один день. Теперь можно задуматься и о более длинных цепочках, а это ставит перед нами новые математические задачи.
Я не пытаюсь утверждать, что Эйлер умел предвидеть будущее. Он, конечно, не думал, что его остроумное решение глупой головоломки когда-нибудь пригодится в медицине. И уж точно он не мог предположить, что оно найдет применение в трансплантологии – ведь в те времена хирургия не слишком отличалась от ремесла мясников. Но я хочу отдать ему должное – даже в те далекие дни он видел, что эта головоломка намекает математикам на нечто более глубокое, и прямо говорил об этом. Взгляните на эпиграф к этой главе. Эйлер неоднократно упоминает «геометрию положения» в контексте данной задачи. Это понятие он обозначает на латыни как
Мечта Лейбница осуществилась в XX веке после весьма существенных достижений XIX века. Мы сегодня называем эту область математики
5
Будьте осторожны в киберпространстве
Никому еще не удалось обнаружить ни одну военную или имеющую отношение к войне задачу, которой служила бы теория чисел или теория относительности, и маловероятно, что кому-нибудь удастся обнаружить нечто подобное, на сколько бы лет мы ни заглядывали в будущее.
Пьер де Ферма знаменит своей Великой теоремой, которая гласит, что если
Если перевести этот текст на алгебраический язык, то Ферма утверждал, что если
116
–1 216–1 316–1 … 1616–1 1816–1…кратны 17. Очевидно, 1716
–1 придется пропустить: это число никак не может быть кратно 17, поскольку оно на единицу меньше такого числа, а именно 1716. Ферма понимал, что такое дополнительное условие необходимо, но не упомянул этого в письме. Проверим такой случай: