Ну вот, мы сделали ключевой шаг на пути превращения летающих драконов в математику. Теперь необходимо понять, как меняются координаты точки в пространстве, когда мы применяем к объекту параллельный перенос или вращение. Сделав это, мы сможем воспользоваться стандартной формулой проецирования результата на плоский экран. Оказывается, параллельный перенос никаких сложностей не представляет. Зато вращение – это большая головная боль.
В двух измерениях – на плоскости – все намного проще. Евклид формализовал геометрию плоскости примерно в 300 году до н. э. Однако он не прибегал при этом к помощи движений, а использовал конгруэнтные треугольники[6]
– треугольники одинаковой формы и размера, различающиеся только положением на плоскости. К XIX веку математики научились интерпретировать такую пару треугольников как жесткое движение, то есть как такое преобразование плоскости, которое переносит первый треугольник на позицию второго. Георг Бернхард РиманСледуя совсем другим путем, математики смогли также предложить эффективные способы расчета жесткого движения на плоскости – это был неожиданный побочный эффект одного нововведения в алгебре, которое мы уже упоминали в предыдущей главе: комплексных чисел. Чтобы осуществить параллельный перенос (скольжение) фигуры, например PIG (см. рис. в главе 6), мы прибавляем одно и то же комплексное число к каждой ее точке. Чтобы повернуть ее на угол
Все это натолкнуло Гамильтона на идею, которая вскоре захватила его. Поскольку комплексные числа так эффективны в двумерной физике, должны существовать и аналогичные им «суперкомплексные» числа, обеспечивающие те же преимущества в трех измерениях. Если бы ему удалось найти новую систему чисел, способную играть эту роль, вся реалистичная физика широко распахнулась бы перед ним. Было даже очевидно, с чего следует начать. Поскольку комплексные числа представляют собой
Зачастую трудно определить точную дату великого математического открытия или прорыва. Дело в том, что у подобных событий нередко длинная и запутанная предыстория. Но иногда и точная дата, и место известны. В данном случае дата – это понедельник, 16 октября 1843 года, а место – Дублин. Можно даже высказать вполне обоснованную догадку о времени, когда это произошло, поскольку Гамильтон, ставший к тому моменту президентом Королевской ирландской академии, шел с женой по тропинке вдоль канала на заседание Совета академии. Когда он остановился передохнуть на Брумском мосту, его осенило. Он увидел решение давней задачи и выцарапал его карманным ножом прямо на камнях моста.
С тех пор надпись, конечно, стерлась, но каждый год группа физиков и математиков проходит по «тропе Гамильтона», чтобы сохранить память об этом событии.