Шумейк утверждал, что кватернионы обеспечивают хотя и менее непосредственный, но куда более удобный для аниматоров способ определения вращений, особенно когда дело касается заполнения промежутков. Кватернион
Кватернионы позволяют уйти от искажений, которые могут накопиться, если объект проворачивается многократно, как часто и требуется. Компьютеры способны проводить точные расчеты с целыми числами, но действительные числа не могут быть представлены с абсолютной точностью, так что в результат вкрадываются крохотные ошибки. При обычных методах представления трансформаций объект, которым манипулируют, слегка меняет форму, а глаз хорошо замечает подобные вещи. Если же взять кватернион и слегка изменить в нем числа, результат по-прежнему будет кватернионом и по-прежнему будет представлять вращение, поскольку
Кватернионы – один из способов создания реалистичного движения в трех измерениях, но все, что я описывал до сих пор, относится исключительно к цельным, жестким объектам. К звездолетам, возможно, но к драконам нет. Драконы
На первом этапе создается трехмерная цифровая модель динозавра, поверхность которого представляет собой сложную сетку из плоских многоугольников – треугольников, прямоугольников, менее правильных четырехугольников. Программа, используемая для этой цели, показывает форму геометрически, и вы можете двигать объект, вращать его, приближать и т. д. Каждое движение при этом отображается на компьютерном экране. Однако непосредственно программа работает не с геометрией как таковой, а со списком координат точек, где стыкуются многоугольники. Мало того, математика, которую при этом использует программа, помогая рисовать динозавра, примерно та же, что задействуется для анимации результата. Основное различие состоит в том, что на этом этапе динозавр как бы закреплен, а вращается и переносится точка наблюдения. При анимации закрепленной может быть точка наблюдения, а динозавр движется, или, как с летящим драконом, точка наблюдения может двигаться тоже.
Так что теперь у нас имеется грубый и жесткий динозавр. Как заставить его двигаться? Чего мы точно не делаем, так это того, что приходилось делать художникам во времена Микки-Мауса: мы не перерисовываем изображение с динозавром в чуть разном положении сотни раз. Мы хотим, чтобы компьютер делал за нас всю рутинную работу. Поэтому мы сводим нашего динозавра к рудиментарному скелету – небольшому числу жестких стержней («костей»), концы которых соединены. Мы пропускаем эти стержни через туловище, конечности, хвост и голову динозавра. Это не анатомически корректный скелет, а просто рамка, которая позволяет изгибать основные части животного. Скелет также представлен в виде списка координат для двух концов каждой кости.