Этот труд также был утерян. Возможно, он был сводом всех знаний того времени о конических сечениях и имел педагогическую направленность.
Во введении мы сказали, что Пифагор выделял четыре математы. Евклид должен был рассмотреть их все, если хотел предложить полный образовательный курс математики. Неудивительно, что ему приписываются следующие тексты.
Евклид
«Явления» — книга о началах астрономии, где описывается видимая часть движущейся небесной сферы (кроме движения планет). В ней рассматриваются восходы и закаты звезд и подразумевается, что читатель знаком с основами сферической геометрии, которая не объясняется в «Началах». Небольшой трактат «Начала музыки», об авторстве которого нет точных сведений, содержит теорию музыкальных интервалов, изложенную в духе пифагорейской школы. «Оптика» — сочинение о перспективе, в котором, как и в «Явлениях», ставится вопрос о нашем знании того, что мы видим. Его цель — установить размеры видимого в зависимости от положения наблюдателя и от масштабов наблюдаемого объекта. Евклид утверждал, что видимость создается по направлению от глаза к предмету, что считалось верным, пока арабский эрудит аль-Хайсам (965-1039) в своем труде «Китаб аль-Маназир» («Книга оптики») не заявил прямо противоположное: мы видим, поскольку глаз получает один или несколько лучей света, отражаемых предметом. Несмотря на это книга Евклида считается одним из важнейших трудов по оптике из тех, что предшествовали работам Ньютона, а такие мыслители Возрождения, как Филиппо Брунеллески, Леон Баттиста Альберти и Альбрехт Дюрер, опирались на Евклида при разработке собственных трактатов о перспективе.
Авторство «Катоптрики» весьма спорно. Тем не менее необходимо сказать, что в ней приведено строгое геометрическое доказательство закона отражения света. Он гласит, что солнечные лучи отражаются под равными углами относительно горизонтальной (или вертикальной) оси. На примере рисунка 1 угол падения 0 равен углу отражения Евклид основывается на геометрическом предложении из Книги 1 «Начал»:
Предложение 20 .В любом треугольнике сумма двух его сторон больше третьей стороны.
Оно доказывается следующим образом. Если отраженный луч образует два равных угла, мы получим отрезки АС и СВ\ если же эти углы не равны, то мы получим отрезки AD и DB. Проведем прямую СЕ, симметричную отрезку АС, и прямую DE, симметричную отрезку AD. Получим треугольник BED, где сторона BE короче суммы сторон BD и DE. Сумма отрезков АС и СВ меньше, чем сумма AD и DB (см. рисунок 2).
Доказав, что луч по закону отражения всегда проходит наиболее короткий путь между точками А, С и В, Евклид выдвигает интереснейшую гипотезу: сама природа заставляет луч выбирать именно этот, самый короткий путь, следуя так называемому принципу наименьшего времени.