D измеряется в единицах средней квадратичной длины шага.
Заметьте, что «полуширины» этих кривых, как это и должно быть по нашим предыдущим расчетам, приблизительно равны N.
Вы, вероятно, заметили также, что величина р(х) вблизи нуля обратно пропорциональна N. Это происходит потому, что все кривые по форме очень похожи, только одни «размазаны» больше, а другие – меньше, и, кроме того, площади, ограниченные каждой кривой и осью х, должны быть равны. Действительно, ведь р(х) ?x; это вероятность того, что D находится где–то внутри интервала ?x; (Ax мало). Как определить вероятность того, что D находится где–то между x1 и x2? Для этого разобьем интервал между x1 и x2 на узкие полоски шириной Ax; (фиг. 6.8) и вычислим сумму членов р(х) ?x; для каждой такой полоски.
Фиг. 6.8. Вероятность [заштрихованная область под кривой р(х)] того, что при случайном блуждании пройденное расстояние D окажется между x1 и x2.