Читаем Фейнмановские лекции по физике. 7. Физика сплошных сред полностью

Таким образом, индуктивность пропорциональна m. Если вам нужна индуктивность для таких устройств, как звуковые уси­лители, то желательно иметь материал, у которого связь между В и Н достаточно линейна. [Вы, должно быть, помните, что в гл. 50 (вып. 4) мы говорили о генерации гармоник в нелинейных системах.] Для таких задач уравнение (36.23) будет очень хорошим приближением. С другой стороны, если нужно гене­рировать гармоники, то используют индуктивности, ведущие себя в высшей степени нелинейно. При этом вы должны поль­зоваться сложной кривой Н—В и применять при вычислениях графические или численные методы.

В обычных «трансформаторах» на одном и том же торе, или сердечнике, из магнитного материала намотаны две катушки. (В больших трансформаторах сердечник для удобства делается прямоугольным.) При этом изменение тока в «первичной» обмотке вызывает изменение поля в сердечнике, которое инду­цируется э.д.с. во «вторичной» обмотке. Поскольку поток через каждый виток обеих обмоток один и тот же, то величина отно­шения э.д.с. в этих двух обмотках такая же, как отношение числа витков в каждой из них. Напряжение, приложенное к первичной обмотке, преобразуется во вторичной в напряжение другой величины. А поскольку для создания требуемых изме­нений магнитного поля необходим определенный полный ток, то алгебраическая сумма токов в двух обмотках должна оста­ваться постоянной и равной требуемому «намагничивающему» току. При изменении напряжения изменяется и сила тока в обмотках, т. е. вместе с преобразованием напряжения про­исходит и преобразование тока.

§ 5. Электромагниты

Поговорим теперь о практической стороне дела, которая немного более сложна. Предположим, что мы имеем электро­магнит стандартной формы, изображенный на фиг. 36.10.

Фиг. 36.10. Электромагнит.

Он состоит из С-образного железного ярма, на которое намотано много витков провода. Чему равно магнитное поле В в зазоре?

Если ширина зазора мала по сравнению со всеми другими размерами, то в качестве первого приближения мы можем счи­тать, что линии В образуют замкнутые кривые так же, как это происходит и в обычном торе. Они выглядят примерно так, как показано на фиг. 36.11,а.

Фиг. 36.11. Поперечное сечение электромагнита.

Они стремятся вылезть из зазора, но если он узок, то эффект этот очень мал. Предположение о постоянст­ве потока В через любое попереч­ное сечение ярма будет довольно хорошим приближением. Если поперечное сечение ярма ме­няется равномерно и если мы пренебрежем любыми краевыми эффектами на зазоре или на углах, то можно говорить, что по всей окружности ярма В однородно.

Поле В в зазоре будет по величине тем же самым. Это следу­ет из уравнений (36.16). Представьте себе замкнутую поверх­ность S (см. фиг. 36.11,б), одна грань которой находится в зазоре, а другая — в железе. Полный поток поля В через эту поверхность должен быть равен нулю. Обозначая через В1 величину поля в зазоре, а через B2 — величину поля в железе, мы видим, что

B1A12А2=0,

а поскольку А12, то отсюда следует, что В12.

Посмотрим теперь на Н. Мы снова можем воспользоваться уравнением (36.19), взяв криволинейный интеграл по контуру Г (см. фиг. 36.11,6). Как и прежде, правая часть равна NI— произведению числа витков на ток. Однако теперь Н в железе и в воздухе будет различным. Обозначая через Н2поле в железе, а через l2 — Длину пути по окружности ярма, мы видим, что эта часть кривой дает вклад в интеграл H2l2. Если же поле в зазоре равно Н1, а ширина его l1, то вклад зазора оказывается равным H1l1. Таким образом, получаем

Но это еще не все. Нам известно еще, что намагниченность в воздушной щели пренебрежимо мала, так что B1=H1. А так как B1=B2, то уравнение (36.26) принимает вид

Остаются еще два неизвестных. Чтобы найти В2и H2, необхо­димо еще одно соотношение, которое связывает В с H в железе.

Если можно приближенно считать, что B2=mH2, то уравнение разрешается алгебраически. Рассмотрим более общий случай, для которого кривая намагничивания железа имеет вид, изоб­раженный на фиг. 36.8. Единственное, что нам нужно,— это найти совместное решение этого функционального соотношения с уравнением (36.27). Его можно найти, строя зависимость (36.27) на одном графике с кривой намагничивания, как это сделано на фиг. 36.12. Точки, где эти кривые пересекутся, и будут нашими решениями.

Для данного тока I уравнение (36.27) описывается прямой линией, обозначенной I>0 на фиг. 36.12. Эта линия пересекает ось Н (B2=0) в точке H2=NI/e0c2l2и имеет наклон -l2/l1 Различные величины токов приводят просто к горизонтальному сдвигу этой линии. Из фиг. 36.12 мы видим, что при данном токе существует нес­колько различных решений, зависящих от того, каким об­разом вы получили их.

Фиг. 36.12. Определение поля в электромагните.

Перейти на страницу:

Похожие книги