Читаем Фейнмановские лекции по физике. 7. Физика сплошных сред полностью

Если вы только что построили маг­нит и включили ток /, то поле B2 (которое равно B1) будет иметь величину, определяе­мую точкой а. Если вы сначала увеличили ток до очень большой величины, а затем пони­зили до I, то значение поля будет определяться точкой b. А если, увеличивая ток от большого отрицательного значения, вы до­шли до /, то поле определяется точкой с. Поле в зазоре зависит от того, как вы поступали в прошлом.

Если ток в магните равен нулю, то соотношение между В2 и H2в уравнении (36.27) изображается кривой, обозначенной I=0 на фиг. 36.12. Здесь опять возможны различные решения. Если вы первоначально «насытили» железо, то в магните может сохраниться значительное остаточное поле, определяемое точ­кой d. Вы можете снять обмотку и получить постоянный маг­нит. Нетрудно понять, что для хорошего постоянного магнита необходим материал с широкой петлей гистерезиса. Такую очень широкую петлю имеют специальные сплавы, подобные Алнико V.

§ 6. Спонтанная намагниченность

Обратимся теперь к вопросу, почему в ферромагнитных мате­риалах даже малые магнитные поля приводят к такой большой намагниченности. Намагниченность ферромагнитных материа­лов типа железа или никеля образуется благодаря магнитным моментам электронов одной из внутренних оболочек атома. Магнитный момент mкаждого электрона равен произведению q/2m на g-фактор и момент количества движения J. Для отдель­ного электрона при отсутствии чисто орбитального движения g=2, а компонента J в любом направлении, скажем, в направ­лении оси z, равна ±h/2, так что компонента m в направлении оси z будет

mz=gh/2m=0,928·10-23 а/м2. (36.28)

В атоме железа вклад в ферромагнетизм фактически дают толь­ко два электрона, так что для упрощения рассуждений мы будем говорить об атоме никеля, который является ферромагнетиком, подобно железу, но имеет на той же внутренней оболочке только один «ферромагнитный» электрон. (Все рассуждения нетрудно затем распространить и на железо.)

Все дело в том, что точно так же, как и в описанных нами парамагнитных материалах, атомные магнитики в присутствии внешнего магнитного поля В стремятся выстроиться по полю, но их сбивает тепловое движение. В предыдущей главе мы вы­яснили, что равновесие между силами магнитного поля, стара­ющимися выстроить атомные магнитики, и действием теплового движения, стремящегося их сбить, приводит к тому, что сред­ний магнитный момент единицы объема в направлении В оказывается равным

где под Вамы подразумеваем поле, действующее на атом, а под kT — тепловую (больцмановскую) энергию. В теории парамаг­нетизма мы в качестве Ваиспользовали само поле В, пренебре­гая при этом частью поля, действующего на каждый атом со стороны соседнего. Но в случае ферромагнетиков возникает усложнение. Мы уже не можем в качестве поля Ва, действующе­го на индивидуальный атом, брать среднее поле в железе. Вмес­то этого нам следует поступить так же, как это делалось в случае диэлектрика: нам нужно найти локальное поле, действующее на отдельный атом. При точном решении нам следовало бы сло­жить вклады всех полей от других атомов кристаллической решетки, действующих на рассматриваемый нами атом. Но по­добно тому как мы поступали в случае диэлектрика, сделаем приближение, состоящее в том, что поле, действующее на атом, будет таким же, как и в маленькой сферической полости внутри материала (предполагая при этом, как и раньше, что моменты соседних атомов не изменяются из-за наличия полости).

Следуя рассуждениям гл. 11 (вып. 5), мы можем надеяться, что должна получиться формула

похожая на формулу (11.25). Но это будет неправильно. Однако мы все же можем использовать полученные там результаты, если тщательно сравним уравнения из гл. 11 с уравнениями ферромагнетизма, которые мы напишем сейчас. Сопоставим сначала соответствующие исходные уравнения. Для областей, в которых токи проводимости и заряды отсутствуют, мы имеем:

Эти два набора уравнений можно считать аналогичными, если мы чисто математически сопоставим

Это то же самое, что и

Другими словами, если уравнения ферромагнетизма записать как

то они будут похожи на уравнения электростатики.

В прошлом это чисто алгебраическое соответствие доста­вило нам некоторые неприятности. Многие начинали думать, что именно Н и есть магнитное поле. Но, как мы уже убеди­лись, физически фундаментальными полями являются Е и В, а поле Н — понятие производное. Таким образом, хотя уравне­ния и аналогичны, физика их совершенно различна. Однако это не может заставить нас отказаться от принципа, что одина­ковые уравнения имеют одинаковые решения.

Теперь можно воспользоваться нашими предыдущими ре­зультатами о полях внутри полости различной формы в диэлект­риках, которые приведены на фиг. 36.1, для нахождения поля Н. Зная Н, можно определить и В. Например, поле Н внутри иглообразной полости, параллельной М (согласно результату, приведенному в § 1), будет тем же самым, что и поле Н внутри материала:

Перейти на страницу:

Похожие книги