Мы можем думать, что члены, описывающие мгновенное взаимодействие типа магнитного, могли бы давать наблюдаемые эффекты, например, могло бы быть небольшое изменение в гравитационном взаимодействии между двумя колёсами, если мы вращаем их всё быстрее и быстрее. Рассматриваемая теория действительно предсказывает подобные эффекты, но практически подобные силы не только были бы очень, очень малы, но они также были бы скрыты множеством других эффектов. Магнитные силы, такие как притяжение между двумя проводящими ток проволочками, достаточно просто наблюдать только потому, что эффекты кулоновского взаимодействия взаимно уничтожаются очень, очень точно при наличии равных величин положительного и отрицательного зарядов. Но все гравитационные силы притягивающие, так что нет надежды на подобное взаимное уничтожение этих сил. Для вращающихся колёс трудность была бы в том, что упругое давление вещества вносило бы добавку в члены, описывающие энергию взаимодействия, колеса бы управлялись слегка по разному и т.д. В добавление к этому, мы можем думать, что обычное гравитационное взаимодействие довольно трудно измерить, и что эффекты типа магнитных могут быть меньше на некоторое отношение (v/c)^2 такое, как отношение магнитных сил к кулоновским. Силы между проволочками, проводящими ток, порядка грамма веса, в то время как кулоновские взаимодействия между частицами в проволочках (в случае, если бы они взаимно не уничтожались) порядка миллиардов миллионов тонн.
Возможно пронаблюдать эффекты, обусловленные таким членом типа магнитного, если мы рассмотрим гравитационное взаимодействие частиц, движущихся со скоростью света или с близкой к ней скоростью. Предположим, что T'
обусловлен стационарным источником, таким как Солнце, так что остаётся только компонент T', и мы рассмотрим гравитационное взаимодействие между Солнцем и быстрой частицей, которая движется со скоростью v, близкой к скорости света c, так что её тензор давления имеет компоненты, такие как T=(v^2/c^2)T. Затем в соотношении (3.4.2) мы видим, что энергия взаимодействия больше, чем обусловленная только T на множитель 1+v^2/c^2 или на множитель 2 для фотона. Таким образом, так как фотон движется в сильном гравитационном поле, то он движется как частица, обладающая большей энергией, чем можно было бы предсказать, исходя из ньютоновской теории. Отклонение луча света звезды тогда, когда луч проходит вблизи поверхности Солнца, в два раза больше, чем величина, получаемая при анализе изменения импульса в рамках ньютоновской теории гравитации. Земляне провели подобный эксперимент и обнаружили, что наблюдаемая величина угла отклонения больше, чем величина, получаемая в рамках ньютоновской теории, на множитель, который очень близок к 2. И хотя данный наблюдательный факт достаточно несовершенен и не во всем согласован, он предполагает действительный эффект в направлении, предсказываемом нашей теорией.11
B 1970-х годах были проведены наблюдения по измерению отклонений гравитационным полем Солнца положений радиоисточников с помощью радиоинтерферометров с очень большой базой и предсказания ОТО были подтверждены с точностью до 1 - 3 % процентов [Заха 97*]. (В этом месте мы могли бы приступить к вычислению в деталях таких эффектов, как и рассмотренный выше, а также многих других задач, таких как комптоновское рассеяние гравитонов, эффектов, связанных с движением Меркурия вокруг Солнца, для того, чтобы найти порядки величин гравитационных эффектов и определить, какие эксперименты могли бы быть возможными. Тем не менее, возможно предпочтительнее приступить к описанию самого гравитационного поля на языке полевого лагранжиана и полевых уравнений, чем на языке амплитуд.
3.5. Лагранжиан для гравитационного поля
Теперь мы будем изучать нашу теорию на языке лагранжиана, исследуя сами поля, а не просто амплитуды. Сначала вновь рассмотрим ситуацию в электродинамике. Здесь действие есть
S
E
=-
d
1
4
A
x
-
A
x
A
x
-
A
x
+
j
A
.
(3.5.1)
Именно из такого лагранжиана мы в конце концов выводим полевые уравнения; мы хотим получить гравитационный аналог соотношения A
=-(1/k^2)j.Нетрудно сделать предположение о форме второго члена, описывающего взаимодействие. Мы предполагаем, что этот член равен -h
T. Здесь аналогия для членов, в которые вовлечены производные, не так очевидна; просто имеется слишком много индексов, которые могут быть переставлены слишком большим числом способов. Мы будем должны написать общую форму для лагранжиана, как сумму по всем возможным способам записи полевых производных, подставляя произвольные коэффициенты перед каждым членом, т.е. записывая его следующим образом:a
h
x
·
h
x
+
b
h
x
·
h
x
+
c
h
x
·
h
x
+… .
(3.5.2)
Наша теория не будет полна до тех пор, пока мы не придумаем некоторый критерий для определения значений коэффициентов a, b, c, d, e, ….