Читаем Фейнмановские лекции по гравитации полностью

Эта частная модель, которую мы обсудили, имеет простую геометрическую интерпретацию, но мы снова подчёркиваем, что именно экспериментальные результаты очень важны и они полностью зависят от правильной формулы для длины дуги; и вовсе не имело бы значения, что мы не можем привести простую формулу геометрического смысла, который мы можем легко представить.

Мы можем сказать, что всё это время жуки живут на поверхности сферы, не зная этого. Теперь, когда мы предположили это, мы легко понимаем, почему наши измерения окружностей давали частный результат, приведённый в соотношении (7.5.6). Если сфера имеет радиус (b/2), то результат, данный соотношением (7.5.6), представляет отношение длины окружности круга к длине вдоль поверхности меридиана, как показано на рис. 7.5.

Рис. 7.5.

Наша предыдущая точка зрения на гравитацию может быть сравнима с той, которая могла бы проводится более консервативными жуками. Кафельные плитки являются ”реальными” квадратами, но линейки изменяются, если мы двигаем их от места к месту, поскольку имеется поле, которое может привести к этому эффекту. Наша более новая геометрическая точка зрения будет состоять в том, что мы не можем определять ”кафельные плитки”, как ”реальные” квадраты; мы живём в мире, который, вообще говоря, неевклидов, имеет кривизну, которая измеряется проведением подходящих экспериментов. Нет нужды думать о процессах, как происходящих в пространстве, которое есть истинно евклидово, так как нет ничего физического, что могло бы быть даже измерено в этом воображаемом пространстве. Кафельные плитки просто представляют нанесение координатных меток, и любое другое нанесение меток может быть также произведено, как и предыдущее.

7.6. Кривизна в двух и четырёх измерениях

Инвариантной величиной, которая характеризует геометрию способом, не зависящим от специального выбора системы координат, является кривизна. Очень просто представить себе смысл кривизны, когда мы рассматриваем двумерную поверхность: плоское неискривлённое пространство, такое как плоскость, или искривлённое пространство, такое как кривая поверхность. Хотя в нашей последующей работе нам понадобится работать с кривизной аналитически, сейчас следует немного поработать с двумерной геометрией, которую мы можем очень просто представить; определения кривизны в более высоких измерениях есть точные аналоги определения кривизны поверхности.

В общем случае длина дуги на двумерной поверхности задаётся соотношением


(ds)^2

=

g

(dx)^2

+

2g

dx

dy

+

g

(dy)^2

.


(7.6.1)


Хотя очевидно, что три функции gab включены в это выражение, инвариантная геометрия определяется только одной функцией координат; оказывается, что мы имеем определённую свободу в выборе координат, например, мы можем сделать их ортогональными; мы обладаем достаточной свободой для того, чтобы наложить два условия на функции gab, для этого у нас есть две функции, с помощью которых мы можем делать координатные преобразования. В частности, всегда можно выбрать координаты таким образом, что


1.

g

=

0,


2.

g

=

g.


Это означает, что для целей изучения геометрических измерений на двумерной поверхности наиболее общим выражением для длины дуги является следующее соотношение:


(ds)^2

=

f(x,y)

(dx)^2

+

(dy)^2

.


(7.6.2)


С одной точки зрения, функция f(x,y) представляет собой множитель, на который меняются линейки, когда мы движемся по поверхности. С другой точки зрения, она очевидно определяет кривизну пространства.

Забавный пример физической ситуации, которая в точности соответствует этим геометриям, придуман одним из студентов Робертсона. Представим себе, что человек делает измерения с помощью линейки на раскалённой пластине, которая в некоторых местах горячее, чем в других. Линейка растягивается или сжимается в зависимости от того, где делаются измерения, в более горячих или более холодных областях на плоскости; очевидно, что соответствующая функция f(x,y) определяется локальной температурой и коэффициентом теплового расширения линейки.

Локальная кривизна поверхности в точке может быть определена с помощью некоторого математического критерия, включающего в себя предельный случай измерений, проделываемых со всё более и более маленькими объектами. Мы могли бы, например, выбрать для сравнения отношения длины окружности к радиусу, отношения площадей кругов к квадратам радиусов; для случая сферических поверхностей эти отношения отличаются от тех, которые получаются на плоской поверхности, на множители (sin )/, где - отношение измеряемого радиуса к радиусу сферы. В пределе всё меньших и меньших кругов эта величина отличается от единицы на величину, пропорциональную площади круга. Этот коэффициент пропорциональности есть 1/R^2 для сферы (умноженный на 3). Это число (коэффициент, характеризующий изменение площади при отклонении длины окружности от 2) подходит для описания локальной кривизны, известной как Внутренняя Кривизна или также как Гауссова Средняя Кривизна Площади сферической поверхности, поскольку математика всех этих понятий восходит к Гауссу.

Перейти на страницу:

Похожие книги

Занимательно об астрономии
Занимательно об астрономии

Попробуйте найти сегодня что-нибудь более захватывающее дух, чем астрономические открытия. Следуют они друг за другом, и одно сенсационнее другого.Астрономия стала актуальной. А всего двадцать лет назад в школе она считалась необязательным предметом.Зато триста лет назад вы рисковали, не зная астрономии, просто не понять сути даже обычного светского разговора. Так он был насыщен не только терминологией, но и интересами древней науки.А еще два века назад увлечение звездами могло окончиться для вас… костром.Эта книга — об астрономии и немного об астронавтике, о хороших астрономах и некоторых астрономических приборах и методах. Словом, о небольшой области гигантской страны, в основе названия которой лежит древнее греческое слово «astron» — звезда.

Анатолий Николаевич Томилин

Астрономия и Космос / Физика / Образование и наука