Читаем Феномен науки полностью

Подобные соображения привели к переоценке относительной важности природы математических объектов и их свойств (включая отношения как свойства пар, троек и т. д. объектов). Если прежде объекты представлялись имеющими независимое реальное существование, а их свойства — чем-то вторичным и производным от природы, то теперь именно свойства объектов, зафиксированные в аксиомах, стали той основой, которая определяет специфику данной математической теории, а объекты утратили всякую специфику и вообще утратили свою «природу», т. е. связываемые с ними в обязательном порядке интуитивные представления; в аксиоматической теории объект это нечто, удовлетворяющее аксиомам. Аксиоматический подход окончательно утвердился на рубеже XIX и XX вв. Интуиция, конечно, сохранила свое значение основного (и, пожалуй, единственного) инструмента математического творчества, но окончательным результатом творчества стала считаться полностью формализованная аксиоматическая теория, которая путем интерпретации может применяться к другим математическим теориям или к неязыковой действительности.

12.10. Метаматематика

Формализация логики была начата (если не считать первых попыток Лейбница) в середине XIX в. работами Дж.Буля (1815-1864) и закончена к началу XX в. главным образом благодаря работам Шредера, К.С.Пирса, Фреге и Пеано. В фундаментальном труде Рассела и Уайтхеда «Principia Mathematica» (вышел в 1910 г.) уже используется формализованный язык, который, если не считать несущественных вариаций, является общепринятым по настоящее время. Этот язык мы описали в главе 6, теперь мы дадим краткий набросок формализации логического вывода.

Существует несколько эквивалентных друг другу формальных систем логического вывода. Мы остановимся на самой компактной. Она использует всего одну логическую связку — импликацию ⊃ и один квантор — квантор общности ∀. Зато она включает логическую константу, которая изображается символом 0 и обозначает тождественно ложное высказывание. Используя эту константу, можно описать отрицание высказывания p как p ⊃ 0, а из отрицания и импликации легко построить и остальные логические связки. Квантор существования выражается через отрицание и квантор общности, таким образом, наш сжатый язык эквивалентен полному языку, рассмотренному в главе 6.

Формальная система (языковая машина) содержит пять схем аксиом и два правила вывода. Схемы аксиом таковы:

A1.p ⊃ (qp).

A2. [p ⊃ (qr)] ⊃ [(pq) ⊃ (pr)].

A3. [(p ⊃ 0) ⊃ 0] ⊃ p.

A4. (∀x)[pq(x)] ⊃ [p ⊃ (∀x)q(x)].

A5. (∀x)q(x) ⊃ q(t).

Здесь р, q, r — произвольные высказывания: в схемах А4 и А5 запись q(x) означает, что выделена одна из свободных переменных, от которых зависит высказывание q; запись q(t) означает, что вместо этой переменной подставлен произвольный терм t; наконец, в схеме А4 предполагается, что переменная х не входит свободно в высказывание р.

Выражение «схема аксиом» означает, что высказывание, имеющее вид одной из формул А1А5, рассматривается как логическая аксиома. Легко убедиться, что эти аксиомы соответствуют нашей интуиции. Схемы А1A3 затрагивают только исчисление высказываний, и их истинность можно проверить по таблицам истинности логических связок. Оказывается, что они истинны всегда независимо от того, какие истинностные значения принимают высказывания р, q и r. Схема А4 гласит, что если q(x) следует при любом х из высказывания р, которое от х не зависит, то из р следует справедливость q(x) при любом х. Схема А5 — это фактически определение квантора общности: если q(x) верно для всех х, то оно верно и для любого t.

Правила вывода можно кратко записать следующим образом:

МР.p | pqqGN.p(x)(∀ξ)p(ξ)

Здесь над чертой стоят посылки, а под чертой — заключения. Первое правило (носящее по традиции латинское название modus ponens) гласит, что если есть две посылки: высказывание p и высказывание, утверждающее, что из p следует q, то в качестве заключения мы выводим высказывание q. Второе правило — правило обобщения (generalization) основано на том, что если удалось доказать некое высказывание p(x), содержащее свободную переменную х, то можно заключить, что это высказывание будет верно при любом значении этой переменной.

Логическим выводом формулы q из множества формул Х (посылок) называется конечная последовательность формул

D = (d1, d2, ..., dn)

такая, что dn совпадает с q и каждая формула di, есть либо формула из множества посылок X, либо логическая аксиома, либо заключение, полученное по правилам вывода из предыдущих формул dj. Когда мы рассматриваем аксиоматическую теорию, то в качестве множества Х фигурирует совокупность всех аксиом данной теории, а логический вывод некоторой формулы есть ее доказательство.

Перейти на страницу:

Похожие книги

Внутреннее устройство Microsoft Windows (гл. 1-4)
Внутреннее устройство Microsoft Windows (гл. 1-4)

Книга посвящена внутреннему устройству и алгоритмам работы основных компонентов операционной системы Microsoft Windows — Windows Server 2003, Windows XP и Windows 2000 — и файловой системы NTFS. Детально рассмотрены системные механизмы: диспетчеризация ловушек и прерываний, DPC, APC, LPC, RPC, синхронизация, системные рабочие потоки, глобальные флаги и др. Также описываются все этапы загрузки операционной системы и завершения ее работы. B четвертом издании книги больше внимания уделяется глубокому анализу и устранению проблем, из-за которых происходит крах операционной системы или из-за которых ее не удается загрузить. Кроме того, рассматриваются детали реализации поддержки аппаратных платформ AMD x64 и Intel IA64. Книга состоит из 14 глав, словаря терминов и предметного указателя. Книга предназначена системным администраторам, разработчикам серьезных приложений и всем, кто хочет понять, как устроена операционная система Windows.Названия всех команд, диалоговых окон и других интерфейсных элементов операционной системы приведены как на английском языке, так и на русском.Версия Fb2 редакции — 1.5. Об ошибках просьба сообщать по адресу — general2008@ukr.net.

Дэвид Соломон , Марк Руссинович

Зарубежная компьютерная, околокомпьютерная литература / Прочая компьютерная литература / Книги по IT
Об интеллекте
Об интеллекте

В книге "Об интеллекте" Джефф Хокинс представляет революционную теорию на стыке нейробиологии, психологии и кибернетики и описывающую систему "память-предсказание" как основу человеческого интеллекта. Автор отмечает, что все предшествующие попытки создания разумных машин провалились из-за фундаментальной ошибки разработчиков, стремившихся воссоздать человеческое поведение, но не учитывавших природу биологического разума. Джефф Хокинс предполагает, что идеи, сформулированные им в книге "Об интеллекте", лягут в основу создания истинного искусственного интеллекта - не копирующего, а превосходящего человеческий разум. Кроме этого книга содержит рассуждения о последствиях и возможностях создания разумных машин, взгляды автора на природу и отличительные особенности человеческого интеллекта.Книга рекомендуется всем, кого интересует устройство человеческого мозга и принципы его функционирования, а также тем, кто занимается проблемами разработки искусственного интеллекта.

Джефф Хокинс , Джеф Хокинс , Сандра Блейксли , Сандра Блэйксли

Зарубежная компьютерная, околокомпьютерная литература / Технические науки / Прочая компьютерная литература / Образование и наука / Книги по IT
Искусство обмана
Искусство обмана

Книга The Art of Deception – «Искусство обмана» – доказывает, насколько мы все уязвимы. В современном мире, где безопасность подчас выходит на первый план, на защиту компьютерных сетей и информации тратятся огромные деньги. Деньги тратятся на технологии безопасности. Эта книга объясняет, как просто бывает перехитрить всех защитников и обойти технологическую оборону, как работают социоинженеры и как отразить нападение с их стороны Кевин Митник и его соавтор, Бил Саймон рассказывают множество историй, которые раскрывают секреты социальной инженерии. Авторы дают практические советы по защите от атак, по обеспечению корпоративной безопасности и снижению информационной угрозы «Искусство обмана» не только демонстрирует, насколько опасна и вредоносна социоинженерия, но поможет разработать собственную программу тренинга по безопасности для сотрудников компании.

Вильям Л Саймон , Кевин Митник

Зарубежная компьютерная, околокомпьютерная литература