Читаем Feynmann 1 полностью

В гл. 4 мы разобрали вопрос о сохранении энергии. При этом законами Ньютона мы не пользовались. Интересно теперь посмотреть, как возникает сохранение энергии из-за того, что действуют эти законы. Для ясности мы начнем с самых простых примеров и постепенно будем их усложнять.

Простейший пример сохранения энергии — это тело, падающее вниз, т. е. тело, движущееся только в вертикальном направлении. Если оно меняет свою высоту под влиянием только тяже­сти, то из-за движения оно обладает кинети­ческой энергией Т (или к. э.) Кроме того, у него есть потенциальная энергия mgh (сокра­щенно U, или п. э.). Их сумма постоянна:

или

Т+U=const. (13.1)

Мы хотим показать, что это утверждение пра­вильно. Что значит доказать его правильность? Второй закон Ньютона говорит, как движется тело, как со временем изменяется его скорость (а именно, что в падении она растет пропорци­онально времени, а высота падения меняется как квадрат времени). Если поэтому отмерять высоту от нулевой точки (где тело покоилось), то не будет ничего странного в том, что она окажется равной квадрату скорости, умножен­ному на какие-то постоянные. Однако все же рассмотрим это повнимательней.

Попробуем вычислить прямо из второго закона Ньютона, как обязана меняться кинетическая энергия; мы продифференцируем кинетическую энергию по времени и потом применим за­кон Ньютона. Дифференцируя 1/2 mv2 по времени, получаем

потому что m считается постоянной. Но по второму закону Ньютона m(dv/dt)=F, так что

dT/dt=Fv. (13.3)

В общем случае получается F·v, но для нашего одномерного случая лучше оставить просто произведение силы на скорость.

Сила в нашем простом примере постоянна, равна —mg и направлена вниз (знак минус именно это и показывает), а ско­рость есть степень изменения положения по вертикали (высоты h) со временем. Поэтому степень изменения кинетической энер­гии равна —mg(dh/dt). Взгляните: что за чудо! Перед нами снова чья-то скорость изменения — скорость изменения со вре­менем величины mgh! Поэтому выходит, что с течением времени изменения в кинетической энергии и в величине mgh остаются равными и противоположными, так что их сумма остается не­изменной. Что и требовалось доказать.

Мы только что показали, пользуясь Вторым законом Нью­тона, что для постоянных сил энергия сохраняется, если только прибавлять потенциальную энергию mgh к кинетической 1/2mv2. Исследуем этот вопрос дальше; посмотрим, можно ли его обобщить, можно ли еще продвинуться в его понимании. Действует ли этот закон только для свободно падающих тел или является более общим? Из того, что мы знаем о сохранении энергии, можно ожидать, что он будет верен для тела, движу­щегося из одной точки в другую по кривой без трения и под дей­ствием одной лишь тяжести (фиг. 13.1). Когда тело, начав дви­гаться с высоты Н, достигает высоты h, то опять должна быть верной та же формула, хотя бы скорость уже не была направле­на по вертикали. Нам надо понять, почему она все еще правильна. Проведем тот же анализ; отыщем скорость изменения кинетиче­ской энергии во времени. Опять будет получаться mv(dv/dt) скорость изменения величины импульса, т. е. сила в направлении движения — касательная сила Ft . Итак,

Скорость—это скорость изменения расстояния вдоль кривой ds/dt, а касательная сила Ft теперь оказывается меньше mg в отношении, равном отношению расстояния ds вдоль пути к вер­тикальному расстоянию dh. Иными словами,

так что

(ds выпадает). И опять, как прежде, мы получили величину — mg(dh/dt), равную скорости изменения mgh.

Чтобы точно уяснить себе, как вообще соблюдается сохра­нение энергии в механике, рассмотрим сейчас некоторые полез­ные понятия.

Во-первых, рассмотрим скорость изменения кинетической энергий в общем трехмерном случае. Кинетическая энергия, когда движение имеет три измерения, равна

T =1/2m (v2x+v2y+v2z).

Дифференцируя ее по времени, получаем три устрашающих члена:

Но ведь m(dvx/dt) — это сила Fx, действующая на тело в на­правлении х. Значит, в правой части формулы (13.4) стоит Fxvx+Fyvy+Fzvz. Призвав на помощь векторный анализ, вспоминаем, что это F·v. Итак,

dT/dt=F·v (13.5)

А можно это вывести и быстрей: если а и b — два вектора, зави­сящих от времени, то производная от a·b равна

Подставим сюда а=b=v:

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука