Читаем Feynmann 1 полностью

Так как понятие кинетической энергии и вообще энергии очень важно, то различным величинам в этих уравнениях при­своены разные имена: l/zmv2 называется, как известно, кинети­ческой энергией; F·v называется мощностью: сила, действующая на тело, умноженная («скалярно») на скорость тела,— это мощность, сообщаемая телу этой силой. Получается великолеп­ная теорема: скорость изменения кинетической энергии тела рав­на мощности, затраченной силами, действующими на тело. Но для изучения сохранения энергии анализ следует продол­жить. Давайте оценим изменение кинетической энергии за очень короткое время dt. Умножив обе части уравнения (13.7) на dt, найдем, что изменение кинетической энергии равно силе, скалярно умноженной на дифференциал пройденного расстояния

dT=F·ds. (13.8)

А интегрируя, получаем

(13.9)

Что это значит? Это значит, что, как бы и по какой бы кривой траектории ни двигалось тело под действием силы, все равно изменение в к. э. при переходе от одной точки кривой к другой равно интегралу от компоненты силы вдоль кривой, умножен­ной на дифференциал смещения ds (интегрирование от первой точки до второй). И у этого интеграла есть имя: его называют работой, совершенной силой над телом. Немедленно мы обнару­живаем, что мощность — это работа за секунду. И еще мы заме­чаем, что работу производит только составляющая силы вдоль направления движения. В нашем первом простом примере участ­вовали только вертикальные силы с одной-единственной состав­ляющей Fz, равной mg. В этих обстоятельствах совершенно неважно, как тело движется, прямо вниз или по параболе, все равно от F·ds (которое можно написать как Fxdx+Fydy+Fzdz) остается только F^dz = -mgdz, потому что прочие составляющие силы — нули. Значит, в этом случае

так что в потенциальную энергию входит только высота, с кото­рой тело падает.

Несколько слов о единицах. Так как сила измеряется в ньютонах, а для получения работы ее умножают на расстояние, то работу измеряют в единицах ньютон·метр, но большинство людей этого названия не любит, предпочитая название джоуль (дж). Это только другое слово, а единица та же. Итак, работу измеряют в джоулях. Мощность же — в джоулях в секунду; эту единицу называют ватт(вт). Если умножить ватты на вре­мя, то получим произведенную работу. Работу, которую местная энергосистема производит в наших квартирах (в техническом смысле), оценивается в ваттах, умноженных на время. Например, киловатт-час — это 1000 втX3600 сек, т. е. 3,6·106 дж.

Приведем еще несколько примеров работы и сохранения энергии. Рассмотрим тело, которое вначале имеет кинетическую энергию и быстро двигается, скользя по полу с трением. Оно останавливается. В начале кинетическая энергия не равна нулю, а в конце она равна нулю', существует работа, произ­веденная силами, потому что раз есть трение, то есть и составляющая силы в направлении, противоположном на­правлению движения, и энергия постепенно теряется. Теперь рассмотрим массу на конце маятника, который ка­чается в вертикальной плоскости в поле тяжести без тре­ния. Здесь наблюдается нечто другое, потому что, когда масса опускается, сила направлена тоже вниз, а когда подымается, сила направлена в обратную сторону, так что у F·ds на спуске и на подъеме разные знаки. В соответствующих точках спуска и подъема значения F·ds равны по величине, но противополож­ны по знаку, так что в итоге интеграл есть чистый нуль. Поэтому кинетическая энергия в конце спуска в точности такая же, какой она была в начале подъема; это и есть принцип сохранения энер­гии. (Заметьте, что в присутствии сил трения сохранение энер­гии на первый взгляд не выполняется. Значит, нужно искать другую форму энергии. И действительно, оказывается, что когда два тела трутся друг о друга, то возникает тепло, мы же сейчас делаем вид, что об этом не знаем.)

§ 2. Работа, выполняемая тяжестью

Теперь займемся задачей потруднее, когда силы уже не по­стоянны и не направлены вниз, как раньше. Мы рассмотрим, например, движение планеты вокруг Солнца или спутника во­круг Земли.

Сперва мы рассмотрим движение тела, которое падает из точ­ки 1 прямо на Солнце или на Землю (фиг. 13.2).

Фиг. 13.2. Падение малой массы m под

действием тяжести на боль­шую массу М.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука