Так как понятие кинетической энергии и вообще энергии очень важно, то различным величинам в этих уравнениях присвоены разные имена: l/zmv2 называется, как известно, кинетической энергией; F·v называется мощностью: сила, действующая на тело, умноженная («скалярно») на скорость тела,— это мощность, сообщаемая телу этой силой. Получается великолепная теорема: скорость изменения кинетической энергии тела равна мощности, затраченной силами, действующими на тело. Но для изучения сохранения энергии анализ следует продолжить. Давайте оценим изменение кинетической энергии за очень короткое время dt. Умножив обе части уравнения (13.7) на dt, найдем, что изменение кинетической энергии равно силе, скалярно умноженной на дифференциал пройденного расстояния
dT=F·ds. (13.8)
А интегрируя, получаем
(13.9)
Что это значит? Это значит, что, как бы и по какой бы кривой траектории ни двигалось тело под действием силы, все равно изменение в к. э. при переходе от одной точки кривой к другой равно интегралу от компоненты силы вдоль кривой, умноженной на дифференциал смещения ds (интегрирование от первой точки до второй). И у этого интеграла есть имя: его называют работой, совершенной силой над телом. Немедленно мы обнаруживаем, что мощность — это работа за секунду. И еще мы замечаем, что работу производит только составляющая силы вдоль направления движения. В нашем первом простом примере участвовали только вертикальные силы с одной-единственной составляющей Fz, равной —mg. В этих обстоятельствах совершенно неважно, как тело движется, прямо вниз или по параболе, все равно от F·ds (которое можно написать как Fxdx+Fydy+Fzdz) остается только F^dz = -mgdz, потому что прочие составляющие силы — нули. Значит, в этом случае
так что в потенциальную энергию входит только высота, с которой тело падает.
Несколько слов о единицах. Так как сила измеряется в ньютонах, а для получения работы ее умножают на расстояние, то работу измеряют в единицах ньютон·метр, но большинство людей этого названия не любит, предпочитая название джоуль (дж). Это только другое слово, а единица та же. Итак, работу измеряют в джоулях. Мощность же — в джоулях в секунду; эту единицу называют ватт(вт). Если умножить ватты на время, то получим произведенную работу. Работу, которую местная энергосистема производит в наших квартирах (в техническом смысле), оценивается в ваттах, умноженных на время. Например, киловатт-час — это 1000 втX3600 сек, т. е. 3,6·106 дж.
Приведем еще несколько примеров работы и сохранения энергии. Рассмотрим тело, которое вначале имеет кинетическую энергию и быстро двигается, скользя по полу с трением. Оно останавливается. В начале кинетическая энергия не равна нулю, а в конце она равна нулю', существует работа, произведенная силами, потому что раз есть трение, то есть и составляющая силы в направлении, противоположном направлению движения, и энергия постепенно теряется. Теперь рассмотрим массу на конце маятника, который качается в вертикальной плоскости в поле тяжести без трения. Здесь наблюдается нечто другое, потому что, когда масса опускается, сила направлена тоже вниз, а когда подымается, сила направлена в обратную сторону, так что у F·ds на спуске и на подъеме разные знаки. В соответствующих точках спуска и подъема значения F·ds равны по величине, но противоположны по знаку, так что в итоге интеграл есть чистый нуль. Поэтому кинетическая энергия в конце спуска в точности такая же, какой она была в начале подъема; это и есть принцип сохранения энергии. (Заметьте, что в присутствии сил трения сохранение энергии на первый взгляд не выполняется. Значит, нужно искать другую форму энергии. И действительно, оказывается, что когда два тела трутся друг о друга, то возникает тепло, мы же сейчас делаем вид, что об этом не знаем.)
§ 2. Работа, выполняемая тяжестью
Теперь займемся задачей потруднее, когда силы уже не постоянны и не направлены вниз, как раньше. Мы рассмотрим, например, движение планеты вокруг Солнца или спутника вокруг Земли.
Сперва мы рассмотрим движение тела, которое падает из точки 1 прямо на Солнце или на Землю (фиг. 13.2).
Фиг. 13.2. Падение малой массы m под
действием тяжести на большую массу М.