Читаем Feynmann 2 полностью

Теперь мы спросим: существуют ли величины, которые пре­образуются при переходе от неподвижной системы к движу­щейся так же, как и х, у, z, t? Наш опыт обращения с векторами подсказывает, что три из этих величин, подобно х, у, z, могли бы представлять собой три компоненты обычного простран­ственного вектора, а четвертая могла бы оказаться похожей на обычный скаляр относительно пространственных вращений: она бы не изменялась, пока мы не перейдем в движущуюся систему координат. Возможно ли, однако, связать с одним из известных «тривекторов» некоторый четвертый объект (ко­торый можно назвать «временной компонентой») таким образом, чтобы вся четверка «вращалась» точно так же, как изменяются пространство и время в пространстве-времени? Мы сейчас покажем, что действительно существует по крайней мере одна такая четверка (на самом деле далеко не одна): три ком­поненты импульса и энергия в качестве временной компоненты преобразуются вместе и образуют так называемый «четырехвектор». Доказывая это, мы избавимся от с тем же приемом, какой употреблялся в уравнении (17.4). Например, энергия и масса отличаются только множителем с2 и при надлежащем выборе единиц измерения энергия совпадет с массой. Вместо того чтобы писать Е=тс2, мы положим Е=т. Если понадо­бится, в окончательных уравнениях можно опять расставить с в нужных степенях.

Итак, уравнения для энергии и импульса имеют вид

Значит, при таком выборе единиц получится

Скажем, если энергия выражена в электронвольтах (эв), то чему равна масса в 1 эв? Она равна массе с энергией покоя 1 эв, т. е. m0c2=1 эв. У электрона, например, масса покоя равна 0,511·106 эв.

Как же будут выглядеть импульс и энергия в новой системе координат? Чтобы узнать это, надо преобразовать уравнения (17.6). Это преобразование легко получить, зная, как пре­образуется скорость. Пусть некоторое тело имело скорость v, а мы наблюдаем за ним из космического корабля, который сам имеет скорость u, и обозначаем соответствующие величины штрихами. Для простоты сперва мы рассмотрим случай, когда скорость v направлена по скорости и. (Более общий случай мы рассмотрим позже.) Чему равна скорость тела v' по измерениям из космического корабля? Эта скорость равна «раз­ности» между v и u. По прежде полученному нами закону

v’=(v-u)/(1-uv’) (17-8)

Теперь подсчитаем, какой окажется энергия Е' по измерениям космонавта. Он, конечно, воспользуется той же массой покоя, но зато скорость станет v'. Он возведет v' в квадрат, вычтет из единицы, извлечет квадратный корень и найдет обратную величину

Энергия Е' просто равна массе m0, умноженной на это выражение. Но нам хочется выразить энергию через нештри­хованные энергию и импульс. Мы замечаем, что

или

Мы узнаем в этом выражении знакомое нам преобразование

Теперь мы должны найти новый импульс рх. Он равен энергии Е', умноженной на v', и так же просто выражается через Е и р:

и мы опять распознаем в этой формуле знакомое нам

Итак, преобразование старых энергии и импульса в новые энергию и импульс в точности совпало с преобразованием t и х в t' и х и t в х': если мы в уравнениях (17.4) будем писать Е каждый раз, когда увидим t, а вместо x: всякий раз будем под­ставлять рх, то уравнения (17.4) превратятся в уравнения (17.10) и (17.11). Если все верно, то это правило предполагает добавочные равенства р'у=-рy и р'zz. Чтобы их доказать, надо посмотреть, как преобразуется движение вверх или вниз. Но как раз в предыдущей главе мы рассмотрели такое движение. Мы анализировали сложное столкновение и заметили, что по­перечный импульс действительно не меняется при переходе в движущуюся систему координат. Стало быть, мы уже убе­дились, что р'уу и pz=pz. Итак, полное преобразование равно

Таким образом, эти преобразования выявили четыре ве­личины, которые преобразуются подобно х, у, z, t. Назовем их четырехвектор импульса. Так как импульс — это четырехвектор, его можно изобразить на диаграмме пространства-времени движущейся частицы в виде «стрелки», касательной к пути (фиг. 17.4).

Фиг. 17.4. Четырехвектор импульса частицы.

У этой стрелки временная компонента дает энергию, а пространственные — тривектор импульса; сама стрелка «реальнее», чем один только импульс или одна лишь энергия: ведь и импульс, и энергия зависят от нашей точки зрения.

§ 5. Алгебра четырехвекторов

Четырехвекторы обозначаются иначе, чем тривекторы. На­пример, тривектор импульса обозначают р. Если хотят дать более детальную запись, то говорят о трех компонентах рх ,pу, рz; можно писать и короче рi , оговаривая, что i принимает три значения х, у и z. Для четырехвекторов мы будем при­менять похожее обозначение: будем писать рm , а m. пусть заменяет собой четыре направления t, x, у, z.

Перейти на страницу:

Похожие книги

«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика