Читаем Feynmann 2 полностью

Мы знаем также, что импульс любой частицы равен про­изведению полной энергии на скорость: p=vE при с=1, или, в обычных единицах, p=vE/c2. Для любой частицы, движущейся со скоростью света, р=Е, если с=1. Формулы для энергии фотона в движущейся системе даются по-прежнему уравнением (17.12), но вместо импульса туда нужно подставить энергию, умноженную на с (на 1). Изменение энергии при преобразо­вании означает изменение частоты света. Это явление назы­вается эффектом Допплера; формулу для него легко получить из уравнения (17.12), положив Е=р и E=hv.

Как сказал Минковский: «Пространство само по себе и время само по себе погрузятся в реку забвенья, а останется жить лишь своеобразный их союз».

Глава 18

ДВУМЕРНЫЕ ВРАЩЕНИЯ

§ 1. Центр масс

§ 2. Вращение твердого тела

§ 3. Момент количества движения

§ 4. Закон сохранения момента количества движения

§ 1. Центр масс

В предыдущих главах мы изучали механику точек, или маленьких частиц, внутренняя структура которых нас совершенно не инте­ресовала. В последующих нескольких главах мы изучим применение законов Ньютона к более сложным вещам. Но ведь чем сложнее объект, тем он интереснее, и вы сами увидите, что явления, связанные с такими более сложны­ми объектами, поистине поразительны. Разу­меется все эти явления не содержат ничего большего, чем комбинации законов Ньютона, однако временами просто трудно поверить, что все это произошло из F=ma!

Что это за более сложные объекты, с кото­рыми мы будем иметь дело в дальнейшем? Это может быть течение воды, вращение галактик и т. д. Но сначала давайте разберемся с наи­более простым из сложных объектов—твердым телом. Этим термином мы будем называть мо­нолитный объект, который одновременно с из­менением положения может еще и вращаться как целое. Впрочем, даже такой простой объ­ект может двигаться достаточно сложно, поэто­му давайте сначала рассмотрим наиболее прос­той случай движения, когда тело крутится во­круг неподвижной оси, причем каждая точка этого тела движется в плоскости, перпендику­лярной к этой оси. Такое вращение тела во­круг неподвижной оси называется плоским, или двумерным. Позднее, когда мы обобщим наш результат на случай трех измерений, вы увидите, что вращение гораздо более хитрая штука, чем механика частицы, и без доста­точного опыта в двух измерениях понять трех­мерные вращения очень трудно.

К первой интересной теореме о движении сложного тела можно прийти следующим образом: попробуйте бросить какой-нибудь предмет, состоящий из множества скрепленных между собой кубиков и стержней. Вы знаете, конечно, что он полетит по параболе; это мы обнаружили еще, когда изучали движение точки. Однако теперь наш объект не точка. Он поворачивается, покачивается и все же летит по параболе; вы можете в этом убедиться. Какая, же точка тела описывает параболу? Ну разумеется, не угол кубика, потому что он поворачивается, не конец стержня, не его середина и не центр кубика. Но все-таки что-то движется по параболе, существует некий эффек­тивный «центр», который движется по параболе. Таким образом, первая теорема о сложных объектах говорит, что сущест­вует какая-то «средняя» точка, вполне определенная математи­чески, которая движется по параболе. Точка эта не обяза­тельно находится в самом теле, она может лежать и где-то вне его.

Это так называемая теорема о центре масс, и доказывается она следующим образом.

Любой объект можно рассматривать как множество малень­ких частичек, атомов, связанных различными силами. Пусть i обозначает номер одной из таких частиц (их страшно много, по­этому i может быть равно, например, 1023). Сила, действующая на i-ю частицу, равна массе, умноженной на ускорение этой частицы:

В последующих главах наши движущиеся объекты и все их части будут двигаться со скоростями, много меньшими, чем скорость света, и поэтому для всех величин мы будем рас­сматривать только нерелятивистское приближение. Масса при этих условиях будет постоянна, так что

Если теперь сложить все силы, действующие на частицы, т. е. сложить все Fi- со всеми значениями индекса, то в результате мы должны получить полную силу F. Складывая же правые части уравнения (18.2) для всех частиц и вспоминая, что про­изводная от суммы равна сумме производных, получаем

Поэтому полная сила равна второй производной от суммы произведений масс частиц на их положение.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука