Читаем Feynmann 2a полностью

Если представлять себе заряд, сосредоточенный в емкости, как нечто аналогичное смещению механической системы х, то электрический ток dq/dt аналогичен скорости, сопротивление R аналогично коэффициенту сопротивления g, а 1/С аналогично постоянной упругости пружины k. Самое интересное во всем этом, что существует элемент цепи, аналогичный массе! Это спираль, порождающая внутри себя магнитное поле, когда через нее проходит ток. Изменение магнитного поля порождает на концах спирали разность потенциалов, пропорциональную dI/dt. (Это свойство спирали используется в трансформаторах.) Магнитное поле пропорционально току, а наведенная разность потенциалов (так ее называют) пропорциональна скорости из­менения тока

V=L(dI/dt)=L(d2q/dt2). (23.16)

Коэффициент L это коэффициент самоиндукции; он является электрическим аналогом массы.

Предположим, мы собираем цепь из трех последовательно соединенных элементов (фиг. 23.5); приложенная между точ­ками 1 и 2 разность потенциалов заставит заряды двигаться по цепи, тогда на концах каждого элемента цепи тоже возникает

разность потенциалов: на концах индуктивности VL=L(d2q/dt2), на сопротивлении VR=R(dq/dt), а на емкости Vc=q/C.

Фиг. 23.5. Электрический ко­лебательный контур, состоящий из сопротивления, индуктивности и емкости.

Сумма этих напряжений дает нам полное напряжение

Мы видим, что это уравнение в точности совпадает с механиче­ским уравнением (23.6); будем решать его точно таким же спо­собом. Предположим, что V(t) осциллирует; для этого надо со­единить цепь с генератором синусоидальных колебаний. Тогда можно представить V(t) как комплексное число V, помня, что для определения настоящего напряжения V(t) это число надо еще умножить на exp(iwt) и взять действительную часть. Анало­гично можно подойти и к заряду q, а поэтому напишем уравнение, в точности повторяющее (23.8): вторая производная q— это (iw)2q, а первая — это (iw)q. Уравнение (23.17) перейдет в

или

последнее равенство запишем в виде

где w20=1/LC, a g=R/L. Мы получили тот же знаменатель, что и в механической задаче, со всеми его резонансными свойст­вами! В табл. 23.1 приведен перечень аналогий между элект­рическими и механическими величинами.

Таблица 23.1 · МЕХАНИЧЕСКИЕ И ЭЛЕКТРИЧЕСКИЕ ВЕЛИЧИНЫ

Еще одно чисто техническое замечание. В книгах по электри­честву используют другие обозначения. (Очень часто в книгах на одну и ту же тему, написанных людьми разных специаль­ностей, используются различные обозначения.) Во-первых, для обозначения Ц-1 используют букву j, а не i (через i должен обозначаться ток!). Во-вторых, инженеры предпочитают соотношение между V и I, а не между V и q. Они так больше привыкли. Поскольку I=dq/dt=iwq, то вместо q можно под­ставить I/iw, и тогда

Можно слегка изменить исходное дифференциальное уравнение (23.17), чтобы оно выглядело более привычно. В книгах часто попадается такое соотношение:

Во всяком случае, мы находим, что соотношение (23.19) между напряжением V и током I то же самое, что и (23.18), и от­личается только тем, что последнее делится на iw. Комп­лексное число R +iwL+1/iwC инженеры-электрики часто называют особым именем: комплексный импеданс Z. Введение новой буквы позволяет просто записать соотношение между током и сопротивлением в виде V=ZI. Объясняется это при­страстие инженеров тем, что в юности они изучали только цепи постоянного тока и знали только сопротивления и закон Ома: V=RI. Теперь они более образованы и имеют уже цепи перемен­ного тока, но хотят, чтобы уравнения были те же самые. Вот они и пишут V=ZI, и единственная разница в том, что теперь со­противление заменено более сложной вещью: комплексным чис­лом. Они настаивают на том, что они не могут использовать принятого во всем мире обозначения для мнимой единицы и пишут j; поистине удивительно, что они не требуют, чтобы вме­сто буквы Z писали букву R! (Много волнений доставляют им разговоры о плотности тока; ее они тоже обозначают буквой j. Сложности науки во многом связаны с трудностями в обозна­чениях, единицах и прочих выдумках человека, о чем сама при­рода и не подозревает.)

§ 4. Резонанс в природе

Хотя мы детально разобрали вопрос о резонансе в электри­ческих цепях, можно приводить пример за примером из любых наук и отыскивать в них резонансные кривые. В природе очень часто что-нибудь «колеблется» и так же часто наступает резо­нанс. Об этом уже говорилось в одной из предыдущих глав; приведем теперь некоторые примеры. Зайдите в библиотеку, возьмите с полки несколько книг, полистайте их; вы обнаружите кривые, похожие на кривые фиг. 23.2, и уравнения, по­хожие на уравнения, приведенные в этой главе. Много ли най­дется таких книг? Для убедительности возьмем всего пять-шесть книг, и они обеспечат вас полным набором примеров резонансов.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука