Фиг. 23.11. Зависимость эффективных сечений реакций от величины момента количества движения.
Нижняя кривая описывает нерезонансный фон; верхняя кривая показывает, что на зтот фон наложено резонансное сечение.
Это очень интересная кривая. Она соответствует резонансу в реакциях со странными частицами (K--мезоны и протоны). Резонанс был обнаружен при измерении количества частиц разных сортов, получающихся в результате реакции. Разным продуктам реакции соответствуют разные кривые, но в каждой из них при одной и той же энергии есть пики примерно одинаковых очертаний. Значит, при определенной энергии K--мезона существует резонанс. При столкновении К--мезонов и протонов, наверное, создаются благоприятные для резонанса условия, а может быть, даже новая частица. Сегодня мы еще не можем сказать, что такое эти выбросы в кривых — «частица» или просто резонанс. Очень узкий резонанс соответствует очень точно отмеренному количеству энергии; это бывает тогда, когда мы имеем дело с частицей. Когда резонансная кривая уширяется, то становится трудно сказать, с чем мы имеем дело — с частицей, которая живет очень мало, или просто с резонансом в реакции. В гл. 2 мы отнесли эти резонансы к частицам, но когда писалась та глава, об этом резонансе еще не было известно, поэтому нашу таблицу элементарных частиц можно дополнить!
Глава 24
ПЕРЕХОДНЫЕ РЕШЕНИЯ
§ 1. Энергия осциллятора
§ 2. Затухающие колебания
§ 3. Переходные колебания в электрических цепях
§ 1. Энергия осциллятора
Хотя глава названа «Переходные решения», речь здесь все еще в основном идет об осцилляторе, на который действует внешняя сила. Мы еще ничего не говорили об энергии колебаний. Давайте займемся ею.
Чему равна кинетическая энергия осциллятора? Она пропорциональна квадрату скорости. Здесь мы затронули важный вопрос. Предположим, что мы изучаем свойства некоторой величины А; это может быть скорость или еще что-нибудь. Мы обратились к помощи комплексных чисел: A==Вехр(iwt), но в физике праведна и чтима только действительная часть комплексного числа. Поэтому если вам для чего-нибудь понадобится получить квадрат А, то не возводите в квадрат комплексное число, чтобы потом выделить его действительную часть.
Действительная часть квадрата комплексного числа не равна квадрату действительной части, она содержит еще и мнимую часть первоначального числа. Таким образом, если мы захотим найти энергию и посмотреть на ее превращения, нам придется на время забыть о комплексных числах.
Итак, истинно физическая величина А — это действительная часть A0exp[i(wt+D)], т. е.
A=A0соs(wt+D), а комплексное число А — это j4oexp(iD). Квадрат этой физической величины равен A20cos2(wt+D). Он изменяется от нуля до максимума, как это предписывается квадратом косинуса. Максимальное значение квадрата косинуса равно 1, минимальное равно 0, а его среднее значение — это 1/2.
Зачастую нас совсем не интересует энергия в каждый данный момент колебания; во многих случаях достаточно знать лишь среднюю величину A2 (среднее значение квадрата А в течение времени, много большего, чем период колебаний). При этих условиях можно усреднить квадрат косинуса и доказать теорему: если А представляется комплексным числом, то среднее значение А2 равно 1/2A20. Здесь А20 — это квадрат модуля комплексного числа А. (Квадрат модуля В записывают по-разному;
|В |2 или ВВ *— в виде произведения числа В на комплексно сопряженное.) Эта теорема пригодится нам еще много раз.
Итак, речь идет об энергии осциллятора, на который действует внешняя сила. Движение такого осциллятора описывается уравнением
Мы, конечно, предполагаем, что F(t) пропорциональна coswt. Выясним теперь, много ли приходится этой силе работать. Работа, произведенная силой в 1 сек, т. е. мощность, равна произведению силы на скорость. [Мы знаем, что работа, совершаемая за время dt, равна Fdx, а мощность равна F(dx/dt).] Значит,