Читаем Feynmann 4a полностью

Период этих повторений равен просто времени T, которое требуется волне, чтобы пробежать дважды всю длину струны. Ведь это как раз то время, которое необходимо для того, чтобы любая волна, отразившись от каждого конца, вернулась в начальное положение и продолжала движение в первона­чальном направлении. Время, необходимое для того, чтобы волна достигла конца струны в любом направлении, оди­наково. Каждая точка струны после целого периода воз­вращается в свое исходное положение, затем опять отклоняется от него и снова, спустя период, возвращается, и т. д.

Возникающий при этом звук тоже должен повторять те же колебания; вот почему мы, тронув струну, получаем музыкаль­ный звук.

§ 2. Ряд Фурье

В предыдущей главе мы познакомились с другой точкой зрения на колеблющуюся систему. Мы видели, что в струне воз­никают различные собственные гармоники и что любое частное колебание, которое только возможно получить из начальных условий, можно рассматривать как составленную в надлежащей пропорции комбинацию нескольких одновременно осциллирую­щих собственных гармоник. Для струны мы нашли, что соб­ственные гармоники имеют частоты w0, 2w0, Зw0, .... Поэтому наиболее общее движение струны складывается из синусои­дальных колебаний основной частоты w0, затем второй гармо­ники 2w0, затем третьей гармоники Зw0 и т. д. Основная гармо­ника повторяется через каждый период T1=2p/w0, вторая гар­моника — через каждый период T2=2p/2w0; она повторяется также и через каждый период Т1=2Т2, т. е. после двух своих периодов. Точно таким же образом через период Т1 повторяется и третья гармоника. В этом отрезке укладываются три ее перио­да. И снова мы понимаем, почему задетая струна через период t1 полностью повторяет форму своего движения. Так получает­ся музыкальный звук.

До сих пор мы говорили о движении струны. Однако звук, который представляет собой движение воздуха, вызванное дви­жением струны, тоже должен состоять из тех же гармоник, хотя здесь мы уже не можем говорить о собственных гармониках воздуха. К тому же относительная сила различных гармоник в воздухе может быть совсем другой, чем в струне, особенно если струна «связана» с воздухом посредством «звучащей дос­ки». Разные гармоники по-разному связаны с воздухом.

Если для музыкального тона функция f(t) представляет давление воздуха в зависимости от времени (скажем, такая, как на фиг. 50.1.б), то можно ожидать, что f(t) записывается в виде суммы некоторого числа простых гармонических функ­ций от времени (подобных coswt) для каждой из различных гармонических частот. Если период колебаний равен Т, то основная угловая частота будет w=2p/Т, а следующие гармо­ники будут 2w, Зw и т. д.

Здесь появляется небольшое усложнение. Мы не вправе ожидать, что для каждой частоты начальные фазы обязательно будут равны друг другу. Поэтому нужно пользоваться функ­циями типа cos(wt+j). Вместо этого, однако, проще исполь­зовать для каждой частоты как синус, так и косинус. Напом­ним, что

coswt+j)=cosjcoswt-sinjsinwt, (50.1)

а поскольку j — постоянная, то любые синусоидальные коле­бания с частотой w могут быть записаны в виде суммы членов, в один из которых входит sinwt, а в другой — coswt.

Итак, мы приходим к заключению, что любая периодиче­ская функция f(t) с периодом Т математически может быть за­писана в виде

где w=2p/T, a a и b — числовые постоянные, указывающие, с каким весом каждая компонента колебания входит в общее колебание f(t). Для большей общности мы добавили в нашу формулу член с нулевой частотой а0, хотя обычно для музы­кальных тонов он равен нулю. Это просто сдвиг средней вели­чины звукового давления (т. е. сдвиг «нулевого» уровня). С этим членом наша формула верна для любого случая. Уравне­ние (50.2) схематически показано на фиг. 50.2.

Фиг. 50.2. Любая периодическая функция f(t) равна сумме про­стых гармонических функций.

Амплитуды гармонических функций аn и bn выбираются по специально­му правилу. На рисунке они показаны только схематически без соблюдения масштаба. [Ряд (50.2) называется рядом Фурье для функций f(t).]

Мы сказали, что любую периодическую функцию можно написать в таком виде. Следует внести небольшую поправку и подчеркнуть, что в такой ряд можно разложить вообще любую звуковую волну или любую функцию, с которой мы сталки­ваемся в физике. Математики, конечно, могут придумать такую функцию, что ее нельзя будет составить из простых гармо­нических (например, функцию, которая «заворачивает» назад, так что для некоторых величин t она имеет два значения!). Однако здесь нам не стоит беспокоиться о таких функциях.

§ 3. Качество и гармония

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки