Читаем Feynmann 4a полностью

Для члена с а2 мы получаем cos9wt и cos5wt, каждый из которых при усреднении превратится в нуль. Для члена с а9 получится соз16wt и cos(-2wt). Но cos(-2wt) — это то же са­мое, что cos2wt, так что опять оба члена дадут при усреднении нуль. Ясно, что все слагаемые с косинусами, за исключением одного, дадут при усреднении нуль. Этим единственным сла­гаемым будет член с а7. Для него же мы получим

1/2a7(cos14wt+cos0). (50.7)

Косинус нуля равен единице, а среднее от него, разумеется, тоже равно единице. Итак, мы получили, что среднее от всех членов с косинусами уравнения (50.4) равно 1/2а7.

Еще легче расправиться с синусами. Когда мы умножаем их на косинус типа cos nwt, то таким же методом можно показать, что все они при усреднении обращаются в нуль.

Мы видим, что способ, придуманный Фурье, действует как своеобразное сито. Когда мы умножаем на cos7wt и усредняем, то все члены, кроме а7, отсеиваются и в результате остается

или

Пусть читатель сам докажет, что коэффициенты b7, например, находятся с помощью умножения (50.2) на sin 7wt и усреднения обеих частей. Результат таков:

Но то, что верно для 7, очевидно, верно и для любого дру­гого целого числа. Теперь мы запишем результат нашего дока­зательства в следующей, более элегантной математической форме. Если m и nцелые отличные от нуля числа и если w=2p/T, то

В предыдущих главах для описания простого гармониче­ского движения было удобно пользоваться экспоненциальной функцией. Вместо coswt мы использовали Re ехр(iwt) —дей­ствительную часть экспоненциальной функции. В этой главе мы использовали синус и косинус, потому что с ними, пожа­луй, немного проще проводить доказательства. Однако наш окончательный результат, уравнение (50.13), можно записать в более компактной форме:

где аnкомплексное число аn-ibn (с b0=0). Если мы всюду будем пользоваться одним и тем же обозначением, то должны также написать

Итак, теперь мы умеем раскладывать периодическую волну на ее гармонические компоненты. Эта процедура называется разложением в ряд Фурье, а отдельные члены называются фурье-компонентами. Однако до сих пор мы не показали, что, определив все фурье-компоненты и затем сложив их, мы дейст­вительно придем назад к нашей функции f(t). Математики до­казали, что для широкого класса функций (в сущности, для всех функций, интересных физикам), которые можно проин­тегрировать, мы снова получаем f(t). Но есть одно небольшое исключение. Если функция f(t) разрывна, т. е. если она неожи­данно прыгает от одного значения к другому, сумма Фурье такой функции даст в точке разрыва значение, лежащее посре­дине между верхним и нижним значениями. Таким образом, если у нас есть странная функция f(t)=0 для 0≤t<t0 и f(t)=1 для t0tT, то ее сумма Фурье всюду даст нам правильную величину, за исключением точки t0, где вместо единицы полу­чится 1/2. Во всяком случае, физически даже нельзя требовать, чтобы функция была всюду нулем вплоть до точки t0, а в самой точке t0 вдруг стала равной единице. Может быть, стоило бы спе­циально для физиков издать такой «указ», что любая разрывная функция (которая может быть только упрощением настоящей физической функции) в точке разрыва должна принимать сред­нее значение. Тогда любая такая функция, с любым конечным числом «ступенек», как и все другие интересные для физики функции, будет правильно описываться рядом Фурье.

В качестве упражнения предлагаем читателю найти ряд Фурье для функции, показанной на фиг. 50.3.

Фиг. 50.3. Ступенчатая фун­кция. f(t)=+1 для 0<t<T/2 ,

f(t)=-1 для T/2<t<T.

Поскольку эту функцию нельзя записать в точной алгебраической форме, то брать интеграл от 0 до Т обычным способом невозможно. Однако если разделить его на две части: по интервалу от 0 до T/2 [на котором функция f(t)=1] и по интервалу от T/2 до T [на ко­тором f(t) -1], то интеграл легко берется. В результате должно получиться

где w=2p/T. Таким образом, оказывается, что для нашей сту­пенчатой волны (со специально выбранной фазой) будут только нечетные гармоники, причем их амплитуды обратно пропор­циональны частотам.

Давайте проверим, что для некоторого значения t результат (50.19) действительно дает снова f(t). Возьмем f = T/4или wt=p/2. Тогда

Сумма этого ряда равна p/4, а, стало быть, f(T)=1 .

§ 5. Теорема об энергии

Энергия волны пропорциональна квадрату ее амплитуды.

Для сложной волны энергия за один период пропорциональна m

Эту энергию можно связать с коэффициентами Фурье.

Напишем

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука