Читаем Feynmann 6 полностью

Если размеры заряда-сгустка на самом деле намного мень­ше, чем r12, то r12 в знаменателе можно положить равным r (расстоянию от центра сгустка) и вынести r за знак интеграла. Кроме того, мы собираемся положить и в числителе r12=r, хотя это и не совсем верно. А неверно это потому, что на самом деле, скажем, полагается брать j в верхней части сгустка совсем не в тот момент, когда в нижней, а немного в другое время.

Фиг. 21.2. Потенциалы в точке (1) даются интегралами от плот­ности заряда r.

По­лагая r12=r в j(t-r12/с), мы вычисляем плотность тока для всего сгустка в одно и то же время (t-r/с). Это приближение годится лишь тогда, когда скорость v заряда много меньше с. Мы, стало быть, ведем расчет в нерелятивистском случае. После замены j на rv интеграл (21.17) превращается в

Раз скорость всех зарядов в сгустке одна и та же, этот инте­грал просто равен v/r, умноженному на общий заряд q. Но qv это как раз dp/dt (скорость изменения дипольного момента), только надо ее, конечно, определять в более раннее время (t-r/с). Запишем эту величину так: p(t-r/с). Итак, мы полу­чаем для векторного потенциала

Мы узнали, что ток в меняющемся диполе создает векторный потенциал в форме сферических волн, источник которых обла­дает силой р’/4pe0с2.

Теперь из B=СXA можно получить магнитное поле. По­скольку р’ направлен по оси z, у А есть только z-компонента; в роторе остаются только две ненулевые производные. Значит, Вх=дАг/ду и В=—дАz/дх. Поглядим сперва на Вх:

(21.19)

Чтобы продифференцировать, вспомним, что r=Ц(x:2+y2+z2), так что

Но мы помним, что дr/ду=y/r; значит, первое слагаемое даст

(21.21)

что убывает как 1/r2, т. е. как поле статического диполя (потому что в данном направлении у/r постоянно).

Второе слагаемое в (21.20) приводит к новому эффекту. Если провести в нем дифференцирование, то получится

(21.22)

где рпросто вторая производная р по t. Вот это-то получаю­щееся от дифференцирования числителя слагаемое и ответственно за излучение. Во-первых, оно описывает поле, убываю­щее на расстоянии как i/r, во-вторых, зависит от ускорения заряда. Теперь вам должно быть ясно, как мы собираемся по­лучить формулу типа (21.1'), описывающую световое излучение.

Явление это настолько интересно и важно, что стоит немного подробнее разобраться в том, откуда берется это «радиацион­ное» слагаемое. Мы начинали с выражения (21.18), зависящего от r как 1/r и тем самым похожего на кулонов потенциал (если не обращать внимания на запаздывающий множитель в числи­теле). Почему же когда мы, желая получить поле, дифферен­цируем по пространственным координатам, то не получаем просто поля вида 1/r2 (конечно, с соответствующей временной задержкой)?

А вот почему. Представьте, что диполь приведен в колеба­тельное движение вверх и вниз. Тогда

Если начертить график зависимости Аr от r в каждый данный момент, то получится кривая, показанная на фиг. 21.3. Амплитуда в пиках убывает как 1/r, но, кроме того, еще имеются пространственные колебания, которые ограничены огибающей вида 1/r. Пространственные производные в формуле пропор­циональны наклону кривой. Из фиг. 21.3 видно, что встречаются намного более крутые наклоны, чем наклон самой кривой 1/г. Очевидно, что при данной частоте наклоны в пиках пропорцио­нальны амплитуде волны, меняющейся как 1/r. Тем самым объяс­няется степень спадания радиационного слагаемого с расстоя­нием.

Все это получается оттого, что временные вариации в источ­нике превращаются в пространственные вариации, когда волны начинают разбегаться в стороны, магнитные же поля зависят от пространственных производных потенциала.

Фиг. 21.3. Зависимость ве­личины А от r в момент t для сферической волны от колеблющегося диполя.

Теперь возвратимся назад и закончим наши расчеты магнит­ного поля. Для Вх мы получили (21.21) и (21.22). Поэтому

(21.1')

С помощью точно таких же выкладок мы придем к

И все это можно объединить в одну красивую векторную фор­мулу:

(21.23)

А теперь взгляните на нее. Прежде всего на больших удале­ниях (когда r велико) следует принимать в расчет только р. Направление В дается вектором pXr, перпендикулярным и к радиусу r, и к ускорению (фиг. 21.4). Все сходится с тем, что получилось бы из формулы (21.1').

Теперь посмотрите (к этому мы не привыкли) на то, что про­исходит поблизости от заряда. В гл. 14, § 7 (вып. 5) мы вывели закон Био и Савара для магнитного поля элемента тока. Мы нашли, что элемент тока jdV привносит в магнитное поле сле­дующий вклад:

(21.24)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука