Читаем Feynmann 6 полностью

Наше изучение света мы начали с того, что выписали уравнение для электрического поля, создаваемого зарядом, который мог как-то произвольно двигаться. Уравнение имело вид

[см. гл. 28 (вып. 3), выражение (28.3)].

Если заряд движется произвольным обра­зом, то электрическое поле, которое существует в некоторой точке, в настоящий момент за­висит только от положения и движения заряда в более ранний момент времени, отстающий на интервал, необходимый для того, чтобы свет, двигаясь со скоростью с, прошел расстояние r' от заряда до точки поля. Иными словами, если вам нужно знать электрическое поле в точке (1) в момент t, вы должны подсчитать положение (2') заряда и его движение в момент (t-r'1с} [где r' — расстояние до точки (1)] из положения заряда (2') в момент (tr/с).

Фиг. 21.1. Поля в точке (1) в момент t зависят от того положения (2'), которое заряд q занимал в момент (t r'/с).

Штрихи здесь напоминают вам, что r' — это так называемое «запаздывающее расстояние» от точки (2') к точке (1), а вовсе не теперешнее расстояние между точкой (2) — положением за­ряда в момент t и точкой поля (1) (фиг. 21.1). Заметьте, что сейчас по-иному определяется направление единичного век­тора еr. В гл. 28 и 34 (вып. 3) мы уславливались, что r (и, стало быть, еr) будет показывать на источник. Теперь же мы следуем определению, используемому в формулировке закона Кулона, по которому r направлено от заряда [в точке (2)] к точке (1) поля. Единственное отличие в том, что новое r (и еr) противо­положно старому.

Мы видели также, что если скорость заряда v всегда много меньше с и если рассматриваются только точки, сильно удален­ные от заряда, так что в (21.1) существенно лишь последнее слагаемое, то поля можно также записать в виде

и

Рассмотрим более детально, что дает полное уравнение (21.1). Вектор еr — это единичный вектор, направленный от «запаздывающей» точки (2') к точке (1). Тогда первое слагаемое дает то, чего следовало бы ожидать, если бы заряд в своем «запаздывающем» положении создавал кулоново поле,— это можно назвать «запаздывающим кулоновым полем». Электри­ческое поле обратно пропорционально квадрату расстояния и направлено от «запаздывающего» положения заряда (т. е. по вектору еr').

Но это только первое слагаемое. Остальные напоминают нам, что законы электричества не утверждают, что все поля, оста­ваясь, как и были, статическими, начинают просто запаздывать (а такое утверждение порой приходится слышать). К «запазды­вающему кулонову полю» надо добавить два других слагаемых.

Второе говорит, что к запаздывающему кулонову полю надо сделать «поправку», равную быстроте изменения запаздываю­щего кулонова поля, умноженной на r'/с, т. е. на само запазды­вание. Этот множитель как бы стремится скомпенсировать за­паздывание в первом. Два первых слагаемых соответствуют вы­числению «запаздывающего кулонова поля» и затем экстрапо­ляции его в будущее, на время r'/с, т. е. как раз к моменту t! Экстраполяция линейна, как если бы мы предположили, что «запаздывающее кулоново поле» будет по-прежнему изменяться со скоростью, рассчитанной для заряда в точке (2'). Если поле меняется медленно, эффект запаздывания почти полностью сводится на нет поправочным слагаемым, и оба слагаемых вмес­те приводят к величине электрического поля, очень близкой к «мгновенному кулонову полю» заряда, находящегося в точ­ке (2).

Наконец, в формуле (21.1) имеется еще третье слагаемое — вторая производная единичного вектора еr'. Изучая явление света, мы по существу использовали тот факт, что вдали от за­ряда два первых слагаемых убывают как обратный квадрат расстояния и на больших расстояниях оказываются слишком слабыми по сравнению с третьим, которое убывает как 1/r. Поэтому мы сосредоточили наше внимание на последнем сла­гаемом и показали, что оно (опять-таки на больших расстоя­ниях) пропорционально компоненте ускорения заряда, попе­речной к линии зрения. (Кроме того, почти всюду ранее мы рас­сматривали только случай, когда заряды двигались нереляти­вистски. Релятивистские эффекты рассматривались только в гл. 34, вып. 3.)

Теперь нужно попробовать связать эти две вещи. У нас есть уравнения Максвелла и есть формула (21.1) для поля точечного заряда. Естественно спросить, эквивалентны ли они? Если мы сможем вывести (21.1) из уравнений Максвелла, то действи­тельно поймем связь света с электромагнетизмом. Вывод ее и есть главная цель этой главы.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука