Нужно, однако, заметить, что из этого добавочного предположения вытекает интересное следствие: мы теряем при этом симметрию относительно времени, которая есть у уравнений Максвелла. Как исходные уравнения для Е и В, так и вытекающие из них волновые уравнения при изменении знака
Нужно упомянуть еще об одном важном факте. В нашем решении для расходящейся волны (20.35) функция ш в начале координат бесконечна. Это как-то необычно. Мы бы предпочли иметь такие волновые решения, которые гладки повсюду. Наше решение физически относится к такой ситуации, когда в начале координат располагается источник. Значит, мы нечаянно сделали одну ошибку: наша формула (20.35) не является решением свободного волнового уравнения (20.33)
Покажем, что ту же самую ошибку легко сделать и в электростатике. Допустим, что нам нужно решить уравнение электростатического потенциала в пустом пространстве С2j=0. Лапласиан равен нулю, потому что мы предположили, что никаких зарядов нигде нет. Но как обстоит дело со сферически симметричным решением уравнения, т. е. с функцией j, зависящей только от r? Используя для лапласиана формулу (20.32), получаем
Умножив это выражение на r, приходим к уже интегрировавшемуся уравнению
Проинтегрировав один раз по r
Еще раз проинтегрировав, мы получим для rj формулу
где b
Что-то здесь явно не так. Мы же знаем решение для электростатического потенциала в области, где нет электрических зарядов: потенциал всюду постоянен. Это соответствует первому слагаемому в решении. Но имеется еще и второй член, подсказывающий нам, что в потенциал дает вклад нечто, меняющееся как 1/r. Мы знаем, однако, что подобный потенциал соответствует точечному заряду в начале координат. Стало быть, хоть мы и думали, что нашли решение для потенциала в пустом пространстве, наше решение фактически дает нам также поле точечного источника в начале координат. Вы замечаете сходство между тем, что сейчас произошло, и тем, что произошло тогда, когда мы искали сферически симметричное решение волнового уравнения? Если бы в начале координат действительно не было ни зарядов, ни токов, то не возникли бы и сферически расходящиеся волны. Сферические волны должны вызываться источниками в начале координат. В следующей главе мы исследуем связь между излучаемыми электромагнитными волнами и вызывающими их токами и напряжениями.
РЕШЕНИЯ УРАВНЕНИЙ МАКСВЕЛЛА С ТОКАМИ И ЗАРЯДАМИ
§ 1. Свет и электромагнитные волны
§ 2. Сферические волны от точечного источника
§ 3. Общее решение уравнений Максвелла
§ 4. Поля колеблющегося диполя
§ 5. Потенциалы движущегося заряда; общее решение Льенара и
Вихерта
§ 6. Потенциалы заряда, движущегося с постоянной скоростью;
формула Лоренца
«Как возникает показатель преломления»; гл. 34 (вып. 3)
«Релятивистские явления в излучении»
§ 1. Свет и электромагнитные волны
В предыдущей главе мы видели, что среди решений уравнений Максвелла есть электромагнитные волны. Свету, радио, рентгеновским лучам и т. д. отвечают электромагнитные волны отличающиеся только длиной волны. Мы уже подробно изучали различные явления, связанные со светом. В этой главе мы хотим связать оба вопроса и показать, что уравнения Максвелла действительно могли служить основой для изучения свойств света.