Выясняется, что полного вывода мы сделать не можем — чересчур сложные математические детали не позволят нам выйти с поля боя без потерь. Но все же мы подойдем к цели достаточно близко, так что вы легко поймете, как может быть установлена интересующая нас связь. Мы опустим лишь некоторые математические детали. Математика этой главы может показаться некоторым из вас довольно сложной, и, возможно, вам даже станет скучно следить внимательно за выводом. Но мы все же считаем, что очень важно связать то, что вы учили раньше, с тем, что вы изучаете сейчас, или по крайней мере продемонстрировать, как эта связь может быть установлена. Если вы не забыли прежние главы, то обратите внимание на то, что всякий раз, как мы принимали некоторое высказывание за исходную точку обсуждения, мы заботливо объясняли, является ли это высказывание новым «допущением», т. е. отражает ли оно основной закон природы или же его можно в конечном счете вывести из каких-то других законов. Дух этих лекций обязывает нас обсудить связь менаду светом и уравнениями Максвелла. Может быть, вам будет кое-где и трудно — с этим уж ничего не поделаешь: другого пути не существует.
§ 2. Сферические волны от точечного источника
В гл. 18 мы установили, что уравнения Максвелла можно решать подстановкой
(21.2)
и
(21.3)
где j и А обязаны удовлетворять уравнениям
(21.4)
и
(21.5)
и, кроме того, условию
(21.6)
Найдем теперь решение уравнений (21.4) и (21.5). Для этого надо уметь решать уравнение
(21.7)
где величина
(21.8)
В гл. 20 мы видели, что решения этого уравнения могут представлять волны разных сортов: плоские волны, бегущие в x-направлении я|;=f(t-x/с); плоские волны, бегущие вдоль
(21.9)
(Решения можно записать иначе — например в виде цилиндрических волн, разбегающихся от оси.)
Мы тогда заметили, что физически формула (21.9) относится не совсем к пустоте: в начале координат должны быть какие-то заряды, иначе расходящаяся волна не получилась бы. Иными словами, формула (21.9) есть решение уравнения (21.8) всюду, кроме непосредственной окрестности точки r=0, где (21.9) представляет собой решение полного уравнения (21.7), в правой части которого стоят источники. Давайте теперь посмотрим, что это за уравнение, т. е. какого рода источник s в уравнении (21.7) должен вызвать волну типа (21.9).
Предположим, что имеется сферическая волна (21.9) и поглядим, во что она превращается при очень малых r. Тогда запаздыванием -r
(21.10)
Итак, ш в точности похоже на кулоново поле заряда, расположенного в начале координат. Мы знаем, что для небольшого сгустка заряда, ограниченного очень малой областью близ начала координат и имеющего плотность r,
где Q=∫rdV
Следуя тем же расчетам, мы должны были бы сказать, что ш из выражения (21.10) удовлетворяет уравнению
(21.11)
где s связано с f формулой
при
Единственная разница в том, что в общем случае
Далее очень важно то, что если ш удовлетворяет (21.11) при малых r
Подытоживая, можно сказать, что если функция источника
(21.12)
то решение уравнения (21.7) имеет вид
(21.13)
Влияние слагаемого с
§ 3. Общее peшeниe уравнений Максвелла
Мы нашли решение уравнения (21.7) для «точечного» источника. Теперь встает новый вопрос: Каков вид решения для рассредоточенного источника? Ну, это решить легко; всякий источник