т. е. расстояние от начала координат. Чтобы узнать, какие функции ш (r) удовлетворяют волновому уравнению, нам понадобится выражение для лапласиана ш. Значит, нам нужно найти сумму вторых производных ш по
Вторая производная по
Частные производные r по x можно получить из
так что вторая производная ш no
(20.28)
Точно так же и
(20.29)
(20.30)
Лапласиан равен сумме этих трех производных. Вспоминая,
что x2+y2+z2=r2, получаем
(20.31)
Часто бывает удобнее записывать уравнение в следующей
форме:
(20.32)
Проделав дифференцирование, указанное в (20.32), вы убедитесь, что правая часть здесь та же, что и в (20.31).
Если мы хотим рассматривать сферически симметричные поля, которые могут распространяться как сферические волны, то величины, описывающие поля, должны быть функцией как r
(20.33)
Поскольку ш(г,
Его и предстоит нам решать. Оно выглядит сложнее, чем в случае плоских волн. Но заметьте, что если умножить это уравнение на r, то получится
(20.34)
Это уравнение говорит нам, что функция rш удовлетворяет одномерному волновому уравнению по переменной r. Используя часто подчеркивавшийся нами общий принцип, что у одних и тех же уравнений и решения одни и те же, мы приходим к выводу, что если rш окажется функцией одного только (r-
Или, как мы видели раньше, можно в равной степени считать rш имеющим форму
Деля на r, находим, что характеризующая поле величина ш (чем бы она ни была) имеет вид
(20.35)
Такая функция представляет сферическую волну общего вида, распространяющуюся от начала координат со скоростью с. Если на минуту забыть об r в знаменателе, то амплитуда волны как функция расстояния от начала координат в каждый данный момент обладает определенной формой, которая распространяется со скоростью
Этот факт легко понять из простых физических соображений.
Мы знаем, что плотность энергии в волне зависит от квадрата амплитуды волны. По мере того как волна разбегается, ее энергия расплывается на все большую и большую площадь, пропорциональную квадрату радиуса волны. Если полная энергия сохраняется, плотность энергии должна убывать как 1/r2, а амплитуда — как 1/r. Поэтому формула (20.35) для сферической волны вполне «разумна».
Мы игнорировали другое возможное решение одномерного волнового уравнения
или
Это тоже сферическая волна, но бегущая
Тем самым мы делаем некоторое специальное предположение. Мы утверждаем (без какого-либо доказательства), что волны, создаваемые источником, всегда бегут только