Читаем Feynmann 6a полностью

Вас может удивить — к чему все это обсуждение бесконечных сетей, если на самом деле они невозможны? Но вся хитрость в том и заключается, что те же характеристики вы обнаружите и в конечной сети, если заключите ее импедансом, совпадающим с характеристическим импедансом z0. Практически, конечно, не­возможно точно воспроизвести характеристический импеданс несколькими простыми элементами, такими, как R, L и С. Но в некоторой полосе частот нередко этого можно добиться в хоро­шем приближении. Этим способом можно сделать конечную фильтрующую сеть со свойствами, очень близкими к тем, кото­рые проявляются в бесконечном фильтре. Скажем, лестница L—С будет во многом вести себя так, как было описано, если на конце ее помещено чистое сопротивление RL/C.

А если в нашей лестнице L—С мы поменяем местами L и С, чтобы получилась лестница, показанная на фиг. 22.23,а, то получится фильтр, который пропускает высокие частоты и отбрасывает низкие.

Фиг. 22.22. Фактор распростра­нения одного звена лестницы.

Фиг. 22.23. Высокочастотный фильтр (а) и его фактор распро­странения как функция 1/w (б).

Пользуясь уже полученными результатами, легко понять, что происходит в этой сети. Вы уже, наверно, за­метили, что всегда, когда L заменяется на С и наоборот, то и in заменяется на 1/iw и наоборот. Значит, все, что происходило раньше с w, теперь будет происходить с 1/w. В частности, можно узнать, как меняется а с частотой, взяв фиг. 22.22 и повсюду вместо со написав 1/w (фиг. 22.23,6).

У описанных фильтров высоких и низких частот есть много­численные технические приложения. Фильтр L—С низких частот часто используется как «сглаживающий» фильтр в цепях по­стоянного тока. Если нам нужно получить постоянный ток от источника переменного тока, мы включаем выпрямитель, который позволяет течь току только в одну сторону. Из выпрямителя выходит пульсирующий ток, график которого выглядит как функция V(t), показанная на фиг. 22.24 Постоянство такого тока — никудышное: он шатается вверх и вниз, а нам нужен по­стоянный ток, чистенький, гладенький, как от батареи аккумуляторов. Этого можно добиться, включив фильтр низких частот между выпрямителем и нагрузкой.

Из гл. 50 (вып. 4) мы уже знаем, что временная функция на фиг. 22.24 может быть представлена в виде наложения постоянного напряжения на синусную волну плюс синусную волну большей частоты плюс еще более высокочастотную синусоиду и т. д., т. е. как ряд Фурье.

Фиг. 22.24. Напряжение на вы­ходе всеволнового выпрямителя.

Если наш фильтр — линейный (т. е. если, как мы предполагали, L и С при изменении токов или напряже­ний не меняются), то то, что выходит из фильтра, представляет собой тоже наложение выходов от каждой компоненты на входе. Если устроить так, чтобы граничная частота w0 нашего фильтра была значительно ниже наинизшей из частот функции V(t), то постоянный ток (у которого w=0) прекрасно пройдет через фильтр, а амплитуда первой гармоники будет крепко срезана; ну, а амплитуды высших гармоник — тем более. Значит, на выходе можно получить какую угодно гладкость, смотря по тому, на сколько звеньев фильтра у вас хватит денег.

Высокочастотный фильтр нужен тогда, когда необходимо срезать некоторые низкие частоты. Например, в граммофонном усилителе высокочастотный фильтр можно использовать, чтобы музыка не искажалась: он задержит низкочастотное громыхание моторчика и диска.

Можно еще делать и «полосовые» фильтры, отбрасывающие частоты ниже некоторой частоты w1 и частоты выше некоторой другой частоты w2 (большей w1), но зато пропускающие все частоты от w1 до w2. Это можно сделать просто, совместив высо­кочастотный и низкочастотный фильтры, но обычно делают лестничную схему, в которой импедансы z1 и z2 имеют более сложный вид — они сами суть комбинации L и С. У такого поло­сового фильтра постоянная распространения может выглядеть так, как на фиг. 22.25,а. Его можно использовать, скажем, что­бы отделять сигналы, которые занимают только некоторый ин­тервал частот, например каждый из каналов телефонной связи в высокочастотном телефонном кабеле или модулированную несу­щую частоту при радиопередаче.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука