Читаем Feynmann 6a полностью

э. д. с. должна быть связана с током I из генератора соотношением

e = I(R + iX). (22.25)

Чтобы найти, с какой средней скоростью подводится энергия, нужно усреднить произведение eI. Но теперь следует быть ос­торожным. Оперируя с такими произведениями, надо иметь дело только с действительными величинами e(t) и I(t). (Дейст­вительные части комплексных функций изображают настоящие физические величины только тогда, когда уравнения линейны; сейчас же речь идет о произведении, а это, несомненно, вещь нелинейная.)

Пусть мы начали отсчитывать t так, что амплитуда I' оказа­лась действительным числом, скажем I0; тогда истинное изме­нение I во времени дается формулой

I=I0coswt.

.

Входящая в уравнение (22.25) э.д.с.— это действительная часть

или

(22.26)

Два слагаемых в (22.26) представляют падение напряжений на R и X (см. фиг. 22.17). Мы видим, что падение напряжения на сопротивлении находится в фазе с током, тогда как падение напряжения на чисто реактивной части находится с током в противофазе.

Средняя скорость потерь энергии <Р>ср, текущей от гене­ратора, есть интеграл от произведения eI за один цикл, делен­ный на период Т; иными словами,

Первый интеграл равен 1/2I20R, а второй равен нулю. Стало быть, средняя потеря энергии в импедансе zR+iX зависит лишь от действительной части z и равна I20R/2. Это согласуется с нашим прежним выводом о потерях энергии в сопротивле­нии. В реактивной части потерь энергии не бывает.

§ 6. Лестничная сеть

А теперь мы рассмотрим интереснейшую цепь, которую можно выражать через параллельные и последовательные сочетания. Начнем с цепи, изображенной на фиг. 22.18, а. Сразу видно, что импеданс между зажимами а и b просто равен z1+z2. Возьмем теперь цепь потруднее (фиг. 22.18, б). Ее можно проанализиро­вать с помощью правил Кирхгофа, но нетрудно обойтись и последовательными и параллельными комбинациями. Два импе­данса на правом конце можно заменить одним z3=z1+z2 (см. фиг. 22.18, в). Тогда два импеданса z2 и z3 можно заме­нить их эквивалентным параллельным импедансом z4 (фиг. 22.18, г). И наконец, z1 и z4 эквивалентны одному импедан­су z5 (фиг. 22.18, д).

А теперь можно поставить забавный вопрос: что произой­дет, если к цепи, показанной на фиг. 22.18, б, бесконечно под­ключать все новые и новые звенья (штриховая линия на фиг. 22.19, а)? Можно ли решить задачу о такой бесконечной це­пи? Представьте, это совсем не трудно. Прежде всего мы замечаем, что такая бесконечная цепь не меняется, если новое звено под­ключить к «переднему» концу. Ведь если к бесконечной цепи добавляется одно звено, она остается все той же бесконечной цепью.

Фиг. 22.18. Эффективный импеданс лестницы.

Пусть мы обозначили импеданс между зажимами а и b бесконечной цепи через z0; тогда импеданс всего того, что справа от зажимов с и d, тоже равен z0. Поэтому если смотреть с перед­него конца, то вся цепь представляется в виде, показанном на фиг. 22.19, б. Заменяя два параллельных импеданса z2 и z0 одним и складывая его с z1? сразу же получаем импеданс всего сочетания

Но этот импеданс тоже равен z0. Получается уравнение

Найдем из него z0:

(22.27)

Фиг. 22.19. Эффективный импеданс бесконечной лестницы.

Таким образом, мы нашли решение для импеданса бесконечной лестницы повторяющихся параллельных и последовательных импедансов. Импеданс z0 называется характеристическим импе­дансом такой бесконечной цепи.

Рассмотрим теперь частный пример, когда последовательный элемент — всегда индуктивность L, а шунтовой элемент — емкость С (фиг. 22.20, а). В этом случае импеданс бесконечной сети получается, если положить z1=iwL и z2=1/iwС. Заметьте, что первое слагаемое z1/2 в (22.27) равно просто половине импе­данса первого элемента. Естественнее было бы поэтому (или по крайней мере проще) рисовать нашу бесконечную сеть так, как показано на фиг. 22.20, б. Глядя на бесконечную сеть из зажима a', мы бы увидали характеристический импеданс

(22.28)

Смотря по тому, какова частота w, наблюдаются два интерес­ных случая. Если w2 меньше 4/LC, то второе слагаемое под кор­нем меньше первого, и импеданс z0 станет действительным чис­лом. Если же w2 больше 4/LС, то импеданс z0 станет чисто мни­мым числом и его можно записать в виде

Раньше мы сказали, что цепь, составленная из одних только мнимых импедансов, таких, как индуктивности и емкости, будет иметь чисто мнимый импеданс. Но как же тогда выходит, что в той цепи, которую мы сейчас рассматриваем (а в ней есть толь­ко одни L и С), импеданс при частотах ниже Ц4/LC представля­ет собой чистое сопротивление?

Фиг. 22.20. Лестница LC, изображенная двумя экви­валентными способами.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука