В изображенной схеме таких уравнений для токов пять. Оказывается, однако, что любое из этих уравнений можно вывести из остальных четырех, поэтому независимых уравнений только четыре. Итого в нашем распоряжении восемь независимых линейных уравнений: четыре для напряжений, четыре для токов. Из них можно получить восемь независимых токов. А если станут известны токи, то определится и вся цепь. Падение напряжения на любом элементе дается током через этот элемент, умноженным на его импеданс (а для источников напряжения они вообще известны заранее).
Мы видели, что одно из уравнений для тока зависит от остальных. Вообще-то уравнений для напряжения тоже можно написать больше, чем нужно. Хотя в схеме фиг. 22.11 и рассматривалась только четверка самых маленьких контуров, но ничего не стоило взять другие контуры и выписать для них уравнения для напряжений. Можно было взять, скажем, путь
В гл. 25 (вып. 2) мы показали, что, если два импеданса z
zs = zl + z2. (22.18)
Кроме того, было показано, что, когда два импеданса соединены
(22.19)
Если вы теперь оглянетесь назад, то увидите, что, выводя эти результаты, на самом деле вы пользовались правилами Кирхгофа. Часто можно проанализировать сложную схему, повторно применяя формулы для последовательного и параллельного импедансов.
Скажем, таким способом можно проанализировать схему, показанную на фиг. 22.12. Импедансы z4 и z5 можно заменить их параллельным эквивалентом, то же можно сделать с импедансами z6 и z7. Затем импеданс z2 можно скомбинировать с параллельным эквивалентом z6 и z7, по правилу последовательного соединения импедансов. Так постепенно можно свести всю схему к генератору, последовательно соединенному с одним импедансом
Однако бывают совсем простые схемы, которые этим методом не проанализируешь. Например, схема фиг. 22.13. Чтобы проанализировать эту цепь, надо расписать уравнения для токов и напряжений по правилам Кирхгофа. Давайте проделаем это. Имеется только одно уравнение для токов:
I1 + I2 + I3=0, откуда
I3=-(I1+I2).
Выкладки можно сэкономить, если этот результат сразу же подставить в уравнения для напряжений. В этой схеме таких уравнений два:
На два уравнения приходится два неизвестных тока. Решая их, получаем 11
(22.20)
и
(22.21)
А третий ток получается как сумма первых двух.
Вот еще пример цепи, которую по правилам параллельных и последовательных импедансов рассчитывать нельзя
(фиг. 22.14). Такую схему называют «мостик». Она встречается во многих приборах, измеряющих импедансы. В таких схемах обычно интересуются таким вопросом:
как должны соотноситься различные импедансы, чтобы ток через импеданс
§ 4. Эквивалентные контуры
Положим, мы подключили генератор
где теперь zэфф— это некоторое комплексное число, алгебраическая функция всех элементов цепи. (Если в цепи нет никаких
генераторов, кроме упомянутого, то в формуле не будет добавочной части, не зависящей от