Было бы непосильным делом проанализировать такую мешанину, пользуясь уравнениями Максвелла. Но, делая множество приближений, которые мы описали в § 2, и переводя существенные черты реальных элементов схем на язык идеализации, можно проанализировать электрическую цепь сравнительно просто. Сейчас мы покажем, как это делается. Пусть имеется цепь, которая состоит из генератора и нескольких импедансов, между собой так, как показано на фиг. 22.9. Согласно нашим приближениям, в областях между отдельными элементами цепи магнитного поля нет. Поэтому интеграл от Е вдоль любой кривой, которая не проходит ни через один из элементов, равен нулю. Рассмотрим кривую Г, показанную штрихом на фиг. 22.9, которая обходит по цепи кругом. Контурный интеграл от Е вдоль этой кривой состоит из нескольких частей. Каждая часть — это интеграл от одного зажима элемента цепи до следующего. Мы назвали этот контурный интеграл падением напряжения на элементе цепи. Тогда весь контурный интеграл равен просто сумме падений напряжения на всех элементах цепи порознь:
А поскольку контурный интеграл равен нулю, то получается, что сумма разностей потенциалов вдоль всего замкнутого контура цепи равна нулю:
(22.14)
Этот результат следует из одного из уравнений Максвелла, утверждающего, что в области, где нет магнитных полей, криволинейный интеграл от Е по замкнутому контуру равен нулю. Теперь рассмотрим другую цепь (фиг. 22.10). Горизонтальная линия, соединяющая выводы
Но одна из наших идеализации состояла в том, что на выводах импедансов сосредоточиваются пренебрежимо малые количества электричества. Предположим теперь, что и электрическим зарядом, накапливаемым на соединительных проводах, тоже можно пренебречь. Тогда сохранение заряда требует, чтобы любой заряд, покинувший один из элементов цепи, немедленно входил в какой-либо другой элемент цепи. Или, что то же самое, чтобы алгебраическая сумма токов, входящих в любую из точек соединения, была равна нулю. Под точкой соединения мы понимаем любую совокупность выводов, таких, как
(22.15)
Сумма токов, входящих в узел, состоящий из четырех выводов
(22.16)
Ясно, что это то же самое уравнение, что и (22.15). Оба эти уравнения не независимы. Общее правило гласит, что
(22.17)
Наше прежнее заключение о том, что сумма падений напряжений вдоль замкнутого контура равна нулю, должно выполняться для каждого контура сложной цепи. Точно так же наш результат, что сумма сил токов, втекающих в узел, равна нулю, тоже должен выполняться для любого узла. Эти два уравнения известны под названием
С их помощью можно найти силы токов и напряжения в какой угодно цепи.
Рассмотрим, например, цепь посложнее (фиг. 22.11). Как определить токи и напряжения в ней? Прямой путь решения таков. Рассмотрим каждый из четырех вспомогательных контуров цепи. (Скажем, один контур проходит через клеммы
z1I1+ z3I3+z4I4-e1=0.
Прилагая те же правила к остальным контурам, получим еще три сходных уравнения.
После этого нужно написать уравнения для токов в каждом узле цепи. Например, складывая все токи в узле b
I1-I3-I2=0.
Аналогично, в узле
I3-I4+I8-I5=0.