Наш результат, относящийся к электрическому полю заряда, можно представить и так. Предположим, что вы на клочке бумаги нарисовали силовые линии покоящегося заряда, а затем эту картину запустили со скоростью v2. Тогда благодаря лоренцеву сокращению рисунок сожмется, т. е. частички графита на бумаге будут казаться нам расположенными в других местах. Но чудо состоит в том, что в результате на пролетающем мимо листочке вы увидите точную картину силовых линий точечного движущегося заряда. Лоренцево сокращение сблизит их по бокам, раздвинет перед зарядом и позади него как раз настолько, чтобы получить нужную плотность. Мы уже отмечали, что силовые линии — это не реальность, а лишь способ представить себе электрическое поле. Однако здесь они ведут себя как самые настоящие реальные линии. В этом частном случае, если вы и сделали ошибку, рассматривая силовые линии как нечто реальное и преобразуя их как реальные линии в пространстве, поле в результате все равно получилось бы правильным.
Однако от этого силовые линии не станут более реальными. Вспомните об электрическом поле, создаваемом зарядом вместе с магнитом; когда магнит движется, он создает новое электрическое поле и разрушает всю нашу прекрасную картину. Так что простая идея сокращающейся картинки, вообще говоря, не годится. Но все же это очень удобный способ запомнить, как выглядит поле быстро движущегося заряда.
Магнитное поле [из уравнения (26.9)] равно vXE. Когда вы векторно помножите скорость на радиальное поле Е, то получите поле В, силовые линии которого представляют окружности вокруг линии движения (фиг. 26.5). Если же теперь мы подставим обратно все
Вы видите, что произведение скорости на магнитное поле имеет ту
(26.12)
Для медленно движущегося заряда
(26.13)
Эта формула в точности соответствует магнитному полю тока, которое было найдено в гл. 14 (вып. 5).
Попутно мне хотелось бы отметить кое-что весьма интересное просто для того, чтобы вы об этом подумали. (К обсуждению этого мы еще вернемся, но несколько позже.) Представьте себе два электрона, скорости которых перпендикулярны, так что пути их пересекаются, однако электроны не сталкиваются; один из них успевает проскочить перед другим. В какой-то момент их относительное положение будет таким, как изображено на фиг. 26.6,
Рассмотрим теперь силы, с которыми
§ 3. Релятивистское преобразование полей
В предыдущем параграфе мы вычисляли электрическое и магнитное поля, исходя из трансформационных свойств потенциалов. Но, несмотря на приведенные ранее аргументы в пользу физического смысла и реальности потенциалов, поля все же важнее. Они тоже реальны, и для многих задач было бы удобно иметь способ вычисления полей в движущейся системе, если поля в некоторой «покоящейся» системе уже известны. Мы имеем законы преобразования для j и А, поскольку