Читаем Feynmann 6a полностью

То же свойство позволяет записать в виде вектора и элемент поверхности. Элемент поверхности имеет две части, скажем dx и dy, которые можно представить вектором da, ортогональным к поверхности. Но мы не можем сделать этого же для четырех измерений. Что будет нормалью к элементу dxdy? Куда она направлена — по оси z или по t?

Короче говоря, для трех измерений оказывается, что ком­бинацию двух векторов типа Lij, к счастью, снова можно пред­ставить в виде вектора, поскольку возникают как раз три члена, которые, выходит, преобразуются подобно компонен­там вектора. Для четырех измерений это, очевидно, невоз­можно, поскольку независимых членов шесть, а шесть ве­личин вы никак не представите в виде четырех.

Однако даже в трехмерном пространстве можно составить такую комбинацию векторов, которую невозможно представить в виде вектора. Предположим, мы взяли какие-то два вектора a=(ах, ay , az) и b=(bx, by, bz) и составили всевозможные различ­ные комбинации компонент типа axbx, axby и т. д. Всего получается девять возможных величин:

Эти величины можно назвать Т' ij .

Если теперь перейти в повернутую систему координат (скажем, относительно оси z), то при этом компоненты а и b изменяются. В новой системе ах должно быть заменено на

Аналогичные вещи происходят и с другими компонентами. Девять компонент изобретенной нами величины Tij., разу­меется, тоже изменяются. Например, Txyхbу переходит в

или

Каждая компонента Tijэто линейная комбинация ком­понент tij.

Итак, мы обнаружили, что из векторов можно сделать не только векторное произведение aXb, три компоненты которого преобразуют подобно вектору. Искусственно мы из двух векто­ров tij . можем сделать «произведение» другого сорта. Девять его компонент преобразуются при вращении по сложным правилам, которые можно выписать. Подобный объект, требующий для своего описания вместо одного индекса два, называется тензо­ром. Мы построили тензор «второго ранга», но так же можно поступить и с тремя векторами и получить тензор третьего ранга, а из четырех векторов — тензор четвертого ранга и т. д. Тензором первого ранга является вектор.

Суть всего этого разговора в том, что наше электромагнитное поле Fmv — тоже тензор второго ранга, так как у него два индек­са. Однако это уже тензор в четырехмерном пространстве. Он преобразуется специальным образом, и через минуту мы найдем его. Это просто произведение векторных преобразований. Если у тензора F mv вы переставите индексы, то он изменит свой знак. Это особый вид тензора, и называется он антисимметричным. Иначе говоря, электрическое и магнитное поля являются частью антисимметричного тензора второго ранга в четырех­мерном пространстве.

Вот какой мы прошли длинный путь. Помните, мы начали с определения, что такое скорость? А теперь мы уже рассуждаем о «тензоре второго ранга в четырехмерном пространстве».

Теперь нам нужно найти закон преобразования Fmv. Сделать это нетрудно — мороки только много,— шевелить мозгами особенно не нужно, а вот потрудиться все же придется. Един­ственное, что мы должны найти,— это преобразование Лоренца величины Сm AvСvAm . Так как Сm — просто специальный слу­чай вектора, то мы будем работать с общей антисимметричной

комбинацией векторов, которую можно назвать Gmv :

(26.20)

(Для наших целей ам следует, в конце концов, заменить на Сm, а bm —на потенциал Аm .) Компоненты аm и bm преобразуются по формулам Лоренца:

(26.21)

Теперь преобразуем компоненты Gm v . Начнем с Gtx:

Но ведь это просто Gtx. Таким образом, мы получили простой

результат G’tx=Gtx .

Возьмем еще одну компоненту:

Итак, получается

И, конечно, точно таким же образом

А теперь ясно, как ведут себя все остальные компоненты. Давайте составим таблицу преобразований всех шести членов; только теперь мы будем все писать для величин Fmv:

(26.22)

Разумеется, по-прежнему у нас Fmv=—f'mv , a F'mm=0.

Итак, мы имеем преобразования электрических и магнитных полей. Единственное, что нам нужно сделать,— это заглянуть в табл. 26.1 и узнать, что означает для векторов Е и В преобра­зование, записанное для Fмv. Речь идет о простой подстановке. Чтобы можно было видеть, как это все выглядит в обычных сим­волах, перепишем наши преобразования компонент поля в виде табл. 26.2.

Таблица 26.2 · ЛОРЕНЦЕВЫ ПРЕОБРАЗОВАНИЯ

ЭЛЕКТРИЧЕСКИХ И МАГНИТНЫХ ПОЛЕЙ

Уравнения в этой таблице говорят нам, как изменяются Е и В при переходе от одной инерциальной системы к другой. Если известны Е и В в одной системе, то мы можем найти, чему они равны в другой, движущейся относительно нее со скоростью v.

Можно переписать эти уравнения в форме, более легкой для запоминания. Для этого заметьте, что поскольку скорость v направлена по оси х, то все компоненты с v представляют собой векторные произведения vXE и vXB. Так что преобразования можно записать в виде табл. 26.3.

Таблица 26.3 · ДРУГАЯ ФОРМА ПРЕОБРАЗОВАНИЯ ПОЛЕЙ

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука