Как можно найти закон преобразования полей? Нам известны законы преобразования j и А, и мы знаем, как выражаются поля через j и А, так что отсюда нетрудно найти преобразования для Е и В. (Вы можете подумать, что у каждого вектора есть нечто, дополняющее его до четырехвектора, так что, например, с вектором Е можно связать некую величину, которая сделает его четырехвектором. То же самое относится и к В. Увы, это не так. Все оказывается совершенно непохожим на то, что можно было бы ожидать.) Для начала возьмем магнитное поле В, которое, конечно, равно СXА. Теперь мы знаем, что
Прежде всего обратите внимание на форму слагаемых, образующих компоненты В:
В слагаемые, образующие x-компоненту
(26.15)
Подобной же «штуке» равна и компонента
(26.16)
Посмотрим теперь, что получится, если мы попытаемся смастерить «штуки» типа
Но вспомните, ведь
Такое выражение нам уже встречалось раньше. Это почти z-компонента поля Е. Почти, за исключением неверного знака. Впрочем, мы забыли, что в четырехмерном градиенте производная по
(26.17)
Теперь она в точности равна —
А что, если оба индекса внизу будут t? Или оба будут
т. е. просто нуль.
Итак, у нас есть шесть таких «F-штук». Кроме них, есть еще шесть полученных перестановкой индексов, но они не дают ничего нового, ибо
и т. п. Таким образом, из шести возможных попарных комбинаций четырех значений индексов мы получили шесть различных физических объектов,
Чтобы записать члены
Fmv =СmAv-СvAm, (26.19)
помня при этом, что
То, что мы нашли, можно сформулировать так: в природе существуют шесть величин, которые представляют различные стороны чего-то одного. Электрическое и магнитное поля, которые в нашем обычном медленно движущемся мире (где нас не беспокоит конечность скорости света) рассматривались как совершенно отдельные векторы, в четырехмерном пространстве уже не будут ими. Они — часть некоторой новой «штуки».
Наше физическое «поле» на самом деле шестикомпонентный объект
Вы видите, что мы сделали фактически обобщение векторного произведения. Мы начали с ротора и с того факта, что его свойства преобразования в точности такие же, как свойства преобразования
Затем (хотя сейчас вы, может быть, об этом и забыли) мы сотворили в гл. 20 (вып. 2) чудо: эти три величины превратились в компоненты вектора. Чтобы сделать это, мы приняли искусственное соглашение: правило правой руки. Нам просто повезло. И повезло потому, что момент
Из девяти возможных его величин независимы лишь три. И вот оказалось, что при изменении системы координат эти три оператора преобразуются в точности, как компоненты вектора.