Однако эта важная проблема не была решена таким методом. Дело в том, что величина электрического поля, которое при этом развивается,— порядка нескольких милливольт на метр. Измерить такие поля, конечно, можно, но вся беда в том, что они ничем не отличаются от любых других электрических полей. Поля, создаваемые движением через магнитное поле, нельзя отличить от электрических полей, возникающих в воздухе по каким-то другим причинам (скажем, от электростатических зарядов в воздухе или на облаках). В гл. 9 мы говорили, что обычно над поверхностью Земли существуют электрические поля с напряженностью около 100
§ 4. Уравнения движения в релятивистских обозначениях
Вы, вероятно, помните, что поля нужны для нахождения действующих на заряды сил и что именно эти силы определяют их движение. Так что связь движения зарядов с силами, разумеется, тоже есть часть электродинамики.
На отдельный заряд, находящийся в полях Е и В, действует
(26.23)
При небольших скоростях эта сила равна произведению массы на ускорение, но истинный закон, справедливый при любых скоростях, гласит: сила равна
(26.24)
Теперь мы хотим обсудить это уравнение с точки зрения теории относительности. Поскольку уравнения Максвелла записаны у нас в релятивистской форме, интересно посмотреть, как в релятивистской же форме выглядят уравнения движения. Посмотрим, можно ли переписать уравнения движения в четырехмерных обозначениях.
Мы знаем, что импульс есть часть четырехмерного вектора pm с энергией m0/Ц(1-
Производная четырехвектора
(26.25)
/Ц(1-v
(26.26)
Вот в чем фокус! Нужно умножать производную
Итак, вторая гипотеза: четырехвектором должна быть величина
(26.27)
Но что такое v? Это уже скорость частицы, а не скорость системы координат! Таким образом, обобщением силы на четырехмерное пространство будет величина fm:
(26.28)
которую мы назовем «4-силой». Она уже четырехвектор, и ее пространственными компонентами будут уже не F, а
F/Ц(1-v2/c2).
Почему же fm четырехвектор? Неплохо бы понять, что это за таинственный множитель 1/Ц(1-v2/с2). Так как мы встречаемся с ним уже второй раз, то самое время посмотреть, почему производная
множителем. Ответ заключается вот в чем. Когда мы берем производную по времени некоторой функции