«Локальные» же законы сохранения основаны на другой идее. Они утверждают, что заряд может перейти из одного места в другое только при том условии, что нечто такое происходит в пространстве между ними. Чтобы описать такой закон, нам нужна не только плотность заряда r, но и величина другого сорта, именно вектор j, задающий скорость потока заряда через поверхность. При этом поток связан со скоростью изменения заряда уравнением (27.1). Это более сильная формулировка закона сохранения. Она говорит, что заряд сохраняется особым образом, сохраняется «локально».
Сохранение энергии, оказывается, тоже
§ 2. Сохранение анергии и электромагнитное поле
Нам надо теперь описать сохранение энергии в электромагнитном поле количественно. Для этого нужно выяснить, сколько энергии находится в единице объема, а также какова скорость ее потока. Рассмотрим сначала энергию только электромагнитного поля. Пусть
(27.2)
Конечно, этот закон, вообще говоря, не верен; энергия поля не сохраняется. Представьте, что вы находитесь в темной комнате, а затем поворачиваете выключатель. Комната внезапно наполняется светом, т. е. в ней оказывается энергия поля, которой раньше не было. Уравнение (27.2) не составляет полного закона сохранения, ибо энергия
Однако если внутри интересующего нас объема находится вещество, то мы знаем, сколько энергии оно несет в себе: энергия каждой частицы равна m0c2/Ц(l-v2/c2). Полная же энергия вещества равна просто сумме энергий всех частиц, а поток ее через поверхность равен просто сумме энергий, переносимой каждой частицей, пересекающей эту поверхность. Но сейчас мы будем иметь дело только с энергией электромагнитного поля: Так что мы должны написать уравнение, которое говорит, что Г полная энергия
а скорость ее уменьшения равна производной этого интеграла по времени со знаком минус. Поток энергии поля из объема
Таким образом,
Раньше мы видели, что над каждой единицей объема вещества поле в единицу времени производит работу
(27.4)
Вот как выглядит наш закон сохранения энергии в поле. Его можно записать как дифференциальное уравнение, подобное (27.2); для этого второе слагаемое нужно превратить в интеграл по объему, что легко делается с помощью теоремы Гаусса. Поверхностный интеграл от нормальной компоненты S равен интегралу от дивергенции S по объему, ограниченному этой поверхностью, так что уравнение (27.3) эквивалентно следующему:
где производную по времени от первого слагаемого мы внесли под интеграл. Поскольку это уравнение верно для любого объема, то интегралы можно отбросить и получить уравнение для энергии электромагнитного поля:
(27.5)
Однако это уравнение не даст нам ничего хорошего, пока мы не узнаем, что такое
§ 3. Плотность энергии и поток энергии в электромагнитном поле