Читаем Feynmann 6a полностью

Как только мы сделали это, уже нет больше нужды придержи­ваться строгого порядка. Мы всегда знаем, что СE действует только на Е, a СB действует только на В. При этих обстоятель­ствах оператором С можно пользоваться как обычным вектором. (Разумеется, после того как все будет окончено, нам захочется вернуться к «стандартным» обозначениям, которые обычно используются.) Таким образом, теперь мы можем делать различ­ные перестановки сомножителей. Так, средний сомножитель в уравнении (27.10) можно переписать как Е·(СBXВ). [Надеюсь, вы помните, что a·(bXc) = b·(cXa).] А последний — как В·(EXСE). Хотя это выглядит несколько странно, но тем не менее здесь все в порядке. Если же мы теперь попытаемся вер­нуться к старым обозначениям, то должны будем расположить операторы С так, чтобы они действовали на свои «собственные» переменные. В первом из них все в порядке, так что мы можем просто опустить индекс у С. Второй же требует некоторой реорганизации, чтобы оператор С поставить перед Е. Этого можно

добиться, переставляя сомножители в векторном произ­ведении и меняя знак:

Теперь все стоит на своем месте и можно вернуться к обычным обозначениям. Формула (27.10) эквивалентна следующему равенству:

(В этом специальном случае быстрее было бы использовать ком­поненты, но, право же, стоило потратить время ради того, чтобы показать вам математический трюк. Может случиться, что вы больше нигде его не встретите, а он очень удобен тогда, когда в векторной алгебре нужно освободиться от правила порядка членов при дифференцировании.)

Вернемся теперь к нашему закону сохранения энергии, при­чем для преобразования СXB в (27.7) мы используем новый результат — равенство (27.11). Вот что оно дает:

Теперь вы видите, что мы почти у цели. Одно из наших сла­гаемых — настоящая производная no t, ее мы используем при образовании и, а другое (превосходная дивергенция) войдет в S. К несчастью, справа в середине осталось еще одно слагаемое, ко­торое не является ни дивергенцией, ни производной по t. Так что пока еще не все закончено. После некоторых размышле­ний мы опять обращаемся к уравнениям Максвелла и, к счастью, обнаруживаем, что (СXE) равно —dB/dt.

Это позволяет превратить дополнительный член в чистую производную чего-то по времени:

Вот теперь у вас получилось то, что нужно. Уравнение для энергии переписывается в виде

А это, если мы определим u и S как

(27.14)

и

(27.15)

в точности напоминает уравнение (27.6). (Перестановкой со­множителей в векторном произведении мы добиваемся правиль­ного знака.)

Итак, наша программа успешно выполнена. Из выражения для плотности энергии мы видим, что она представляет сумму «электрической» и «магнитной» плотностей энергии, которые в точности равны выражениям, полученным нами в статике, когда мы находили выражение для энергии через поля. Кроме того, мы получили выражение для вектора потока энергии электромагнитного поля. Этот новый вектор S=e0c2EXB по имени своего первооткрывателя называется «вектором Пойнтинга». Он говорит нам о скорости, с которой энергия движется в пространстве. Энергия, протекающая в секунду через малую поверхность da, равна S·nda, где n — вектор, перпендикуляр­ный к поверхности da. (Теперь, когда у нас есть формулы для u и S, можете, если хотите, забыть все выкладки.)

§ 4. Неопределенность энергии поля

Прежде чем заняться некоторыми приложениями формул Пойнтинга [т. е. выражений (27.14) и (27.15)], я хотел бы заме­тить, что на самом деле мы их не «доказали». Все, что мы сде­лали,— это нашли только возможное u и возможное S. Но откуда же нам известно, что, покрутив формулами, мы не придем к дру­гому выражению для u и другому выражению для S? Новое S и новое и будут отличаться от старых, но по-прежнему будут удовлетворять уравнению (27.6). Такое вполне может случиться. Однако в формулы, которые получаются при этом, всегда входят различные производные полей (причем это всегда члены второго порядка типа второй производной или квадрата первой произ­водной). Для u и S можно фактически написать бесконечное число различных выражений, и до сих пор никто не думал над экспериментальной проверкой того, которое же из них истинное. Люди полагают, что простейшее выражение, по-видимому, и должно быть истинным, но надо сознаться, что мы так и не знаем, как же на самом деле распределена энергия в электромагнитном поле. Пойдем по тому же легчайшему пути и постулируем, что энергия поля определяется выражением (27.14). При этом вектор потока S должен задаваться уравнением (27.15).

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука