Как только мы сделали это, уже нет больше нужды придерживаться строгого порядка. Мы всегда знаем, что СE действует только на Е, a СB действует только на В. При этих обстоятельствах оператором С можно пользоваться как обычным вектором. (Разумеется, после того как все будет окончено, нам захочется вернуться к «стандартным» обозначениям, которые обычно используются.) Таким образом, теперь мы можем делать различные перестановки сомножителей. Так, средний сомножитель в уравнении (27.10) можно переписать как Е·(СBXВ). [Надеюсь, вы помните, что a·(bXc) = b·(cXa).] А последний — как В·(EXСE). Хотя это выглядит несколько странно, но тем не менее здесь все в порядке. Если же мы теперь попытаемся вернуться к старым обозначениям, то должны будем расположить операторы С так, чтобы они действовали на свои «собственные» переменные. В первом из них все в порядке, так что мы можем просто опустить индекс у С. Второй же требует некоторой реорганизации, чтобы оператор С поставить перед Е. Этого можно
добиться, переставляя сомножители в векторном произведении и меняя знак:
Теперь все стоит на своем месте и можно вернуться к обычным обозначениям. Формула (27.10) эквивалентна следующему равенству:
(В этом специальном случае быстрее было бы использовать компоненты, но, право же, стоило потратить время ради того, чтобы показать вам математический трюк. Может случиться, что вы больше нигде его не встретите, а он очень удобен тогда, когда в векторной алгебре нужно освободиться от правила порядка членов при дифференцировании.)
Вернемся теперь к нашему закону сохранения энергии, причем для преобразования СXB в (27.7) мы используем новый результат — равенство (27.11). Вот что оно дает:
Теперь вы видите, что мы почти у цели. Одно из наших слагаемых — настоящая производная no
Это позволяет превратить дополнительный член в чистую производную чего-то по времени:
Вот теперь у вас получилось то, что нужно. Уравнение для энергии переписывается в виде
А это, если мы
(27.14)
и
(27.15)
в точности напоминает уравнение (27.6). (Перестановкой сомножителей в векторном произведении мы добиваемся правильного знака.)
Итак, наша программа успешно выполнена. Из выражения для плотности энергии мы видим, что она представляет сумму «электрической» и «магнитной» плотностей энергии, которые в точности равны выражениям, полученным нами в статике,
§ 4. Неопределенность энергии поля
Прежде чем заняться некоторыми приложениями формул Пойнтинга [т. е. выражений (27.14) и (27.15)], я хотел бы заметить, что на самом деле мы их не «доказали». Все, что мы сделали,— это нашли только