Читаем Feynmann 6a полностью

У вас, без сомнения, начинает создаваться впечатление, что теория Пойнтинга, по крайней мере частично, опровергает вашу интуицию относительно того, где находится энергия электро­магнитного поля. Вам может показаться, что необходимо за­няться «починкой» своей интуиции, отработкой ее на множестве примеров. Однако в этом, по-видимому, никакой необходимости нет. Не думаю, чтобы вы оказались в большом затруднении, забыв на время, что энергия втекает внутрь провода извне, а не течет вдоль него. Не так уж важно, используя идею сохра­нения энергии, указать во всех деталях, какой путь избирает энергия. Циркуляция энергии вокруг магнита и заряда в боль­шинстве случаев, по-видимому, совершенно несущественна. Хотя это и не так уж важно, однако ясно, что повседневная интуиция нас обманывает.

§ 6. Импульс поля

Теперь мне бы хотелось поговорить об импульсе поля. Поле обладает энергией; точно так же в единице объема оно обладает каким-то импульсом. Обозначим плотность импульса через g. Импульс, разумеется, может иметь различные направления, по­этому g должно быть вектором. Временно мы будем говорить об одной компоненте и для начала возьмем x-компоненту. По­скольку любая компонента импульса сохраняется, то мы можем сразу написать закон примерно такого вида:

Левая часть тривиальна. Скорость изменения импульса веще­ства равна просто действующей на него силе. Для частиц F=q(E+vXB), а для распределенных зарядов на единицу объема действует сила F=(rE+jXB). Однако слагаемое «поток импульса» несколько странно. Оно не может быть дивергенцией какого-то вектора, ибо это не скаляр, а скорее x-компонента некоторого вектора. Но как бы то ни было оно должно иметь вид

поскольку x-компонента импульса должна течь в каком-либо из трех направлений. Во всяком случае, каковы бы ни были а, b и с, такая комбинация предполагается равной потоку x-ком­поненты импульса.

Дальше по правилам той же самой игры напишем rЕ+jXB только через Е и В, исключив плотность заряда r и плотность тока j и затем жонглируя слагаемыми и произведя подстановку, получаем

Сопоставляя затем разные слагаемые, мы должны найти выра­жения для gx, a, b и с. В общем, здесь масса работы, но мы не собираемся заниматься ею. Вместо этого мы найдем только выражение для плотности импульса g и притом совсем другим способом.

В механике есть очень важная теорема, которая говорит: каков бы ни был поток энергии любого вида (энергия поля или какой-то другой сорт энергии), произведение ее количества, прошедшего через единицу площади в единицу времени, на 1/с2 равно импульсу в единице объема пространства. В случае электродинамики эта теорема говорит, что g равно вектору Пойнтинга, поделенному на с2:

(27.21)

Так что вектор Пойнтинга дает нам не только поток энергии, но после деления на с2 и плотность импульса. Этот же результат получился бы из анализа, который мы только что предполагали проделать, однако более заманчиво воспользоваться общей теоремой. Сейчас мы рассмотрим несколько интересных приме­ров и рассуждений, призванных убедить вас в справедливости этой общей теоремы.

Первый пример: возьмем множество заключенных в ящик частиц. Пусть, скажем, их будет N штук на кубический метр, и пусть они движутся вдоль ящика со скоростью v. Рассмотрим теперь воображаемую плоскость, перпендикулярную к v. Поток энергии через единицу площади этой плоскости в секунду равен Nv (т. е. числу частиц, пересекающих плоскость за се­кунду), умноженному на энергию каждой частицы. Энергия же каждой частицы будет m0c2/Ц(l-v2/c2). Так что поток энергии равен

Но импульс каждой частицы равен m0vЦ(1-v2/c2), откуда плотность импульса будет

Фиг. 27.7. Порция энергии U, двигаясь со скоростью с, несет импульс, равный U/c.

что в полном согласии с теоремой как раз равно 1/с2 на поток энер­гии. Таким образом, для пучка частиц теорема оказывается вер­ной.

Верна она и для света. При изучении света (см. вып. 3) мы установили, что, когда происхо­дит поглощение света, поглоти­телю передается некоторое коли­чество импульса. Действительно, в гл. 34 (вып. 3) мы видели, что импульс равен поглощенной энер­гии, деленной на с [уравнение (34.24)]. Пусть U0 будет энергией, падающей в секунду на единичную площадь, тогда переданный той же поверхности за то же время импульс равен U0/c. Но импульс распространяется со скоростью с, так что его плотность перед поглотителем должна быть равна U02. Теорема снова справедлива.

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука