Читаем Feynmann 6a полностью

системе отсчета интервал At может соответствовать изменению как t', так и х', так что при изменении только t' изменение х будет другим. Для наших дифференцирований следовало бы найти такую переменную, которая была бы мерой «интервала» в пространстве-времени и оставалась бы той же самой во всех системах отсчета. Когда в качестве этого интервала мы принимаем приращение Dх, то оно будет тем же во всех системах отсчета. Когда частица «движется» в четырехмерном пространстве, то возникают приращения как Dt, так и Dх, Dy, Dz. Можно ли из них сделать интервал? Да, они образуют компоненты приращения четырехвектора хm=(сt, х, у, г), так что, если определить величину Ds через

что представляет четырехмерное скалярное произведение, то в ней мы приобретаем настоящий скаляр и можем пользоваться им для измерения четырехмерного интервала. Исходя из вели­чины As или ее предела ds, мы можем определить параметр

Хорошим четырехмерным оператором будет и производ­ная по s, т. е. d/ds, так как она инвариантна относительно пре­образований Лоренца.

Для движущейся частицы ds легко связывается с dt. Для точечной частицы

(26.30)

а

Таким образом, оператор

есть инвариантный оператор. Если подействовать им на любой четырехвектор, то мы получим другой четырехвектор. Например, если мы действуем им на (ct, x, у, z), то получаем четырехвектор скорости

Теперь мы видим, почему Ц(l-v2/c2) поправляет дело.

Инвариантная переменная s — очень полезная физическая величина. Ее называют «собственным временем» вдоль траекто­рии частицы, ибо в системе, в любой момент движущейся вместе с частицей, ds просто равно интервалу времени. (В этой системе Dx=Dy=Dz=0, a Ds=Dt.) Если вы представите себе часы, скорость хода которых не зависит от ускорения, то, двигаясь вместе с частицей, такие часы будут показывать время s.

Теперь можно вернуться назад и записать закон Ньютона (подправленный Эйнштейном) в изящной форме:

(26.32)

где fm определяется формулой (26.28). Импульс же рm может быть записан в виде

(26.33)

где координаты xm=(ct, х, у, z) описывают теперь траекторию частицы. Наконец, четырехмерные обозначения приводят нас к очень простой форме уравнений движения:

(26.34)

напоминающей уравнения F=ma. Важно отметить, что урав­нения (26.34) и F=ma — вещи разные, ибо четырехвекторная форма уравнения (26.34) содержит в себе релятивистскую ме­ханику, которая при больших скоростях отличается от механики Ньютона. Это абсолютно непохоже на случай уравнений Максвелла, где нам нужно был о переписать уравнения в реляти­вистской форме, совершенно не изменяя их смысла, а изменяя лишь обозначения.

Вернемся теперь к уравнению (26.24) и посмотрим, как в четырехвекторных обозначениях записывается правая часть.

Три компоненты F, поделенные на Ц(1-v2/c2), составляют про­странственные компоненты fm , так что

Теперь мы должны подставить все величины в их релятивистских обозначениях. Прежде всего c/Ц(1-v2/c2), vy/Ц(1-v2/c2) и vz/Ц(1-v2/c2) представляют t-, у- и z-компоненты 4-скорости um. Компоненты же Е и В входят в электромагнитный тензор вто­рого ранга Fmv. Отыскав в табл. 26.1 компоненты Fmv, соответ­ствующие Ех, Вг и Вv , получим

здесь уже начинает вырисовываться что-то интересное. В каж­дом слагаемом есть индекс х, и это разумно, ибо мы находим х-компоненту силы. Все же остальные индексы появляются в парах tt, yy, zz все, кроме слагаемого с хх, которое куда-то делось. Давайте просто вставим его и запишем

Этим мы ничего не изменили, так как благодаря антисимметрии Fmv слагаемое Fxx равно нулю. Причиной же нашего желания восстановить его является возможность сокращенной записи уравнения (26.36):

(26.37)

Это по-прежнему уравнение (26.36), если предварительно мы примем соглашение: когда какой-то индекс встречается в произ­ведении дважды (подобно v), нужно автоматически суммировать все слагаемые с одинаковыми значениями этого индекса точно так же, как и в скалярном произведении, т. е. пользуясь тем же самым правилом знаков.

Нетрудно поверить, что уравнение (26.37) так же хорошо работает и для m=y, и для m=z. Но как обстоит дело с m=t? Посмотрим для забавы, что дает формула

Теперь мы снова должны перейти к Е и В. После этого получается

или

Но в (26.28) ft бралось равным

А это одно и то же, что (26.38), ибо v·(vXB) равно нулю. Так что все идет как нельзя лучше.

В результате наше уравнение движения записывается в элегантном виде:

(26.39)

Как ни приятно видеть столь красиво записанное уравнение, форма эта не особенно полезна. При нахождении движения частицы обычно удобнее пользоваться первоначальным урав­нением (26.24), что мы и будем делать в дальнейшем.

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука