Читаем Feynmann 6a полностью

Но давайте все-таки встанем на более консервативную точку зрения и будем говорить, по крайней мере временно, что имеется два сорта масс и что полный импульс предмета должен быть суммой механического и электромагнитного импульсов. Причем механический импульс равен произведению «механической» массы mмех на скорость v. В тех экспериментах, где масса частицы измеряется, например, определением импульса или «кручением на веревочке», мы находим ее полную массу. Им­пульс равен произведению именно полной массы (mмех+mэм) на скорость. Таким образом, наблюдаемая масса может состоять из двух (а может быть, и из большего числа, если мы учтем другие поля) частей: механической и электромагнитной. Мы знаем, что наверняка имеется электромагнитная часть; для нее у нас есть даже формула. А сейчас появилась увлекательная возможность выбросить механическую массу совсем и считать массу полностью электромагнитной.

Посмотрим, каков должен быть размер электрона, если «механическая» часть массы полностью отсутствует. Это можно выяснить, приравнивая электромагнитную массу (28.4) наблю­даемой массе электрона, т. е. mе. Получаем

(28.5)

Величина

(28.6)

называется «классическим радиусом электрона» и равна она 2,82X10=13 см,

т. е. одной стотысячной диаметра атома.

Почему радиусом электрона названа величина r0, а не а? Потому что мы можем провести те же самые расчеты с другим распределением заряда. Мы можем взять его равномерно размазанным по всему объему шара или наподобие пушистого шарика. Например, для заряда, равномерно распределенного по всему объему сферы, коэффициент 2/3 заменяется коэффициентом 4/5. Вместо того чтобы спорить, какое распределение правильно, а какое нет, было решено взять в качестве «номинального» ра­диуса величину r0. А разные теории приписывают к ней свой коэффициент.

Давайте продолжим наше обсуждение электромагнитной теории массы. Мы провели расчет для v<<с, а что произойдет при переходе к большим скоростям? Первые попытки вычисления привели к какой-то путанице, но позднее Лоренц понял, что при больших скоростях заряженная сфера должна сжиматься в эллипсоид, а поля должны изменяться согласно полученным нами для релятивистского случая в гл. 26 формулам (26.6) и (26.7). Если вы проделаете все вычисления для р в этом слу­чае, то получите, что для произвольной скорости v импульс умножается еще на 1/Ц(1-v2/c2), т. е.

(28.7)

Другими словами, электромагнитная масса возрастает с увеличением скорости обратно пропорционально Ц(1-v2/c2). Это открытие было сделано еще до создания теории относительности.

Тогда предлагались даже эксперименты по определению зависимости наблюдаемой массы от скорости, чтобы установить, какая часть ее электрическая по своему происхождению, а какая — механическая. В те времена считали, что электромаг­нитная часть массы должна зависеть от скорости, а ее механи­ческая часть — нет.

Но пока ставились эксперименты, теоретики тоже не дремали. И вскоре была развита теория относительности, которая дока­зала, что любая масса, независимо от своего происхождения, должна изменяться как m0/Ц(1-v2/c2). Таким образом, уравнение (28.7) было началом теории, согласно которой масса зависит от скорости.

А теперь вернемся к нашим вычислениям энергии поля, которые привели к выводу выражения (28.2). Энергия U в соот­ветствии с теорией относительности эквивалентна массе U/с2, поэтому (28.2) говорит, что поле электрона должно обладать массой

(28.8)

которая не совпадает с электромагнитной массой mэм, опреде­ленной формулой (28.4). В самом деле, если бы мы просто скомбинировали выражения (28.2) и (28.4), то должны были бы написать

Эта формула была получена еще до теории относительности, и когда Эйнштейн и другие физики начали понимать, что U всегда должно быть равно mc2, то замешательство было очень велико.

§ 4. С какой силой электрон действует сам на себя?

Разница между двумя формулами электромагнитной массы особенно обидна, потому что совсем недавно мы доказали согла­сованность электродинамики с принципами относительности. Кроме того, теория относительности неявно и неизбежно пред­полагает, что импульс должен быть равен произведению энергии на v/c2. Неприятная история! По-видимому, мы где-то допустили ошибку. Конечно, не алгебраическую ошибку в наших расчетах, а где-то проглядели что-то существенное.

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука