Читаем Feynmann 6a полностью

Однако при ускорении электрона силы больше не уравновеши­ваются, так как, чтобы электромагнитное влияние дошло от одного места до другого, нужно некоторое время. Например, сила, действующая на участок а (фиг. 28.3, б) со стороны участ­ка b, расположенного на противоположной стороне, зависит от положения b в запаздывающий момент. И величина и направ­ление силы определяются движением заряда. Если он ускоряет­ся, то силы, действующие на разные части электрона, могут быть такими, как это показано на фиг. 28.3, в. Теперь при сло­жении всех этих сил они не сокращаются. Для постоянной ско­рости эти силы уравновешивались бы, хотя на первый взгляд кажется, что даже при равномерном движении запаздывание приведет к неуравновешенным силам. Тем не менее оказывается, что в тех случаях, когда электрон не ускоряется, равнодейст­вующая сила равна нулю. Если же мы рассмотрим силы между различными частями ускоряющегося электрона, то действие и противодействие не компенсируют в точности друг друга и электрон действует сам на себя, стараясь уменьшить ускорение. Он тянет сам себя «за шиворот» назад.

Можно, хотя и не легко, вычислить эту силу самодействия, однако здесь мы не будем заниматься такими трудоемкими рас­четами. Я просто скажу вам, что получается в специальном сравнительно простом случае движения в одном измерении, скажем вдоль оси х. Самодействие в этом случае можно записать в виде ряда. Первый член этого ряда зависит от ускорений х, следующий — пропорционален х и т. д.

Так что в результате

(28.9)

где a и g — числовые коэффициенты порядка единицы. Коэффи­циент ос при слагаемом x зависит от предположенного распреде­ления зарядов; если заряды равномерно распределены по сфере, то a=2/3. Таким образом, слагаемое, пропорциональное ускоре­нию, изменяется обратно пропорционально радиусу электрона а, что в точности согласуется с величиной, полученной для mэм в (28.4). Если взять другое распределение, то а изменится, но в точности так же изменится и величина 2/3 в (28.4). Слагаемое с х не зависит ни от радиуса а, ни от предположенного распре­деления заряда; коэффициент при нем всегда равен 2/3. Следую­щее слагаемое пропорционально радиусу а и коэффициент g при нем определяется распределением заряда. Обратите внима­ние, что если устремить радиус электрона к нулю, то последнее слагаемое (равно как и все высшие члены) обратится в нуль, второе остается постоянным, но первое — электромагнитная масса — становится бесконечным. Видно, что бесконечность возникает из-за действия одной части электрона на другую; по-видимому, мы допустили глупость — возможность «точеч­ного» электрона действовать на самого себя.

§ 5. Попытки изменения теории Максвелла

Теперь мне бы хотелось обсудить, как можно изменить электродинамику Максвелла, но изменить так, чтобы сохранить понятие простого точечного заряда. В этом направлении было сделано немало попыток, а некоторые теории сумели даже так представить дело, что вся масса электрона оказалась полностью электромагнитной. Однако ни одной из этих теорий не суждено было выжить. И все же интересно обсудить некоторые из пред­ложенных возможностей хотя бы для того, чтобы оценить борь­бу человеческого разума.

Наша теория электромагнетизма началась с разговоров о взаимодействии одного заряда с другим. Затем мы построили теорию этих взаимодействующих зарядов и закончили наше изу­чение теорией поля. Мы настолько уверовали в нее, что пытались с ее помощью определить, как одна часть электрона действует на другую. Все трудности, возможно, происходят из-за того, что электрон не действует сам на себя; экстраполяция закона вза­имодействия между отдельными электронами на взаимодействие электрона самого с собой, возможно, ничем не оправдана. По­этому некоторые из предложенных теорий совсем исключают возможность самодействия электрона. Из-за этого в них уже не возникает бесконечностей. И никакой электромагнитной массы при этом у частиц нет, а ее масса снова полностью механическая. Однако в такой теории возникают новые трудности.

Нужно сразу же вам сказать, что такие теории требуют из­менения и понятий электромагнитного поля. Как вы помните, мы говорили, что сила, действующая на частицу в любой точке, определяется просто двумя величинами: Е и В. Если мы отказываемся от идеи самодействия, то это утверждение становится уже несправедливым, ибо силы, действующие на электрон в некотором месте, больше не определяются полями Е и В, а только теми их частями, которые создаются другими зарядами. Так что мы всегда должны помнить о том, какие поля Е и В создает тот заряд, для которого вычисляется действующая сила, а какие — все остальные заряды. Это делает теорию гораздо более запутанной, хотя и позволяет избежать трудностей с бесконечностями.

Перейти на страницу:

Похожие книги

Вселенная, жизнь, разум
Вселенная, жизнь, разум

Посвящена проблеме возможности существования жизни, в том числе и разумной, на других планетных системах. Вместе с тем книга содержит достаточно полное и доступное изложение результатов современной астрофизики. Книга получила первую премию на конкурсе Общества «Знание» на лучшую научно-популярную книгу. Пятое издание было переработано в соответствии с новой точкой зрения автора. Шестое издание, подготовленное к публикации Н. С. Кардашевым и В. И. Морозом, дополнено тремя статьями И. С. Шкловского. Для широкого круга читателей со средним образованием.   (Примечание OCR: в книге около 120 рисунков и множество таблиц. Таблицы будут в тексте приведены полностью, рисунки к сожалению нет, из-за резкого увеличения размера выходного файла, что для интернета немаловажно.) Шкловский И. С. Вселенная, жизнь, разум / Под ред. Н. С. Кардашева и В. И. Мороза, 6-е изд., доп. — М.: Наука. Гл. ред. физ. — мат. лит., 1987 (Проблемы науки и техн. прогресса). — 320 с. 2 р. 10 к., 132000 экз.

Иосиф Самуилович Шкловский

Астрономия и Космос / Физика / Прочая научная литература / Образование и наука
Битва в ионосфере
Битва в ионосфере

После Второй мировой войны знаменитый англичанин Уинстон Черчилль сказал, что радиолокация стала одним из величайших достижений человечества XX века. Открытие советским ученым Николаем Кабановым эффекта рассеяния земной поверхностью отражённых ионосферой коротких радиоволн, сделанное в 1947 году, позволило существенно расширить границы применения радиолокации. Он первым в мире показал потенциальную возможность ведения загоризонтной радиолокации, позволяющей обнаруживать цели на дальностях до нескольких тысяч километров. Однако долгие годы реализация научного открытия Кабанова оставалась неразрешимой технической задачей. Первыми дерзнули ее решить в начале 60-х годов минувшего столетия советские ученые Ефим Штырен, Василий Шамшин, Эфир Шустов и другие конструкторы. Создать же реальную боевую систему загоризонтной радиолокации, которая была способна обнаруживать старты баллистических ракет с ядерным оружием с территории США, удалось только в 70-х годах XX века коллективу учёных под руководством главного конструктора Франца Александровича Кузьминского. Однако из-за интриг в Минрадиопроме он незаслуженно был отстранён от работы. Ему не удалось доработать боевую систему ЗГРЛС. В начале 90-х годов разработчики и заказчики из Минобороны СССР-РФ подверглись необоснованным нападкам в советской, а затем в российской прессе. Они были обвинены в волюнтаризме и разбазаривании огромных бюджетных средств. Военный журналист подполковник Александр Бабакин еще в 1991 году в одной из публикаций опроверг эти обвинения. «Ветеран боевых действий», Лауреат премии союза журналистов Москвы, полковник запаса Александр Бабакин 18 лет вел расследование трагедии и триумфа отечественной загоризонтной локации. В документальной книге-расследовании даются ответы на многие вопросы противостояния между СССР-РФ и США в области создания систем предупреждения о ракетном нападении.

Александр Бабакин

История / Физика / Технические науки / Образование и наука