Читаем Feynmann 7 полностью

Вообще говоря, тензор напряжений в куске твердого тела, а также его эллипсоид изменяются от точки к точке, поэтому для описания всего куска мы должны задать каждую компонен­ту Sij как функцию положения. Тензор напряжений, таким об­разом, является полем. Мы уже имели примеры скалярных по­лей, подобных температуре Т(х, у, z), и векторных полей, по­добных Е(х, у, z), которые в каждой точке задавались тремя числами. А теперь перед нами пример тензорного поля, задавае­мого в каждой точке пространства девятью числами, из кото­рых для симметричного тензора Sij реально остается только шесть. Полное описание внутренних сил в произвольном твер­дом теле требует знания шести функций координат х, у и z.

§ 7. Тензоры высших рангов

Тензор напряжений Sij описывает внутренние силы в веществе. Если при этом материал упругий, то внутренние деформа­ции удобно описывать с помощью другого тензора Tij— так называемого тензора деформаций. Для простого объекта, подоб­ного бруску из металла, изменение длины DL, как вы знаете, приблизительно пропорционально силе, т. е. он подчиняется закону Гука

DL=gF.

Для произвольных деформаций упругого твердого тела тензор деформаций Tij связан с тензором напряжений Sij системой линейных уравнений

Вы знаете также, что потенциальная энергия пружины (или бруска) равна

а обобщением плотности упругой энергии для твердого тела будет выражение

Полное описание упругих свойств кристалла должно задаваться коэффициентами gijkl. Это знакомит нас с новым зверем — тен­зором четвертого ранга. Поскольку каждый из индексов может принимать одно из трех значений — х, у или z, то всего ока­зывается 34=81 коэффициент. Но различны из них на самом де­ле только 21. Во-первых, поскольку тензор Sij симметричен, у него остается только шесть различных величин, и поэтому в уравнении (31.27) нужны только 36 различных коэффициен­тов. Затем, не изменяя энергии, мы можем переставить Sij и Skl, так что gijkl должно быть симметрично при перестановке пары индексов ij и kl. Это уменьшает число коэффициентов до 21. Итак, чтобы описать упругие свойства кристалла низшей воз­можной симметрии, требуется 21 упругая постоянная! Разу­меется, для кристаллов с более высокой симметрией число необходимых постоянных уменьшается. Так, кубический кри­сталл описывается всего тремя упругими постоянными, а для изотропного вещества хватит и двух.

В справедливости последнего утверждения можно убе­диться следующим образом. В случае изотропного материала компоненты gijkl не должны зависеть от поворота осей. Как это может быть? Ответ: они могут быть независимы, только когда выражаются через тензоры dij. Но существует лишь два воз­можных выражения, имеющих требуемую симметрию,— это dijdkl и dikdjl+dil+djk, так что gijkl должно быть их линейной комбинацией. Таким образом, для изотропного материала

gijkl =а(dijdkl) + b(dikdjl+dildjk);

следовательно, чтобы описать упругие свойства материала, тре­буются две постоянные: а и b. Я предоставляю вам самим до­казать, что для кубического кристалла требуются три такие постоянные.

И еще один последний пример (на этот раз пример тензора третьего ранга) дает нам пьезоэлектрический эффект. При на­пряженном состоянии в кристалле возникает электрическое поле, пропорциональное тензору напряжений. Общий закон пропорциональности имеет вид

где eiэлектрическое поле, a Pijkпьезоэлектрические коэф­фициенты (пьезомодули), составляющие тензор. Можете ли вы сами доказать, что если у кристалла есть центр инверсии (т. е. если он инвариантен относительно замены х, у, z®-х,-y,-z), то все его пьезоэлектрические коэффициенты равны нулю.

§ 8. Четырехмерный тензор электро­магнитного импульса

Все тензоры, с которыми мы сталкивались в этой главе, были связаны с трехмерным пространством; они определялись как величины, имеющие известные трансформационные свойства при пространственных поворотах. А вот в гл. 26 (вып. 6) мы имели возможность воспользоваться тензором в четырехмерном про­странстве-времени: это был тензор электромагнитного поля Fmv. Компоненты такого четырехмерного тензора особым образом преобразуются при преобразованиях Лоренца. (Мы этого, прав­да, не делали, но могли бы рассматривать преобразования Ло­ренца как своего рода «вращение» в четырехмерном «простран­стве», называемом пространством Минковского; тогда аналогия с тем, что мы рассматривали здесь, была бы ярче.)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука