Здесь я хочу обсудить явления преломления света, ну и, разумеется, его поглощение плотным веществом. Теорию показателя преломления мы уже рассматривали в гл. 31 (вып. 3), но тогда наши знания математики были весьма ограничены и мы остановились только на показателе преломления веществ с малой плотностью наподобие газов. Но физические принципы, приводящие к возникновению показателя преломления, мы там все же выяснили. Электрическое поле световой волны поляризует молекулы газа, создавая тем самым осциллирующие дипольные моменты, а ускорение осциллирующих зарядов приводит к излучению новых волн поля. Это новое поле, интерферируя со старым, изменяет его. Изменение поля эквивалентно тому, что происходит сдвиг фазы первоначальной волны. Из-за того что сдвиг фазы пропорционален толщине материала, эффект в целом оказывается эквивалентным изменению фазовой скорости света в материале. Прежде, когда рассматривалось это явление, мы пренебрегали усложнениями, возникающими от таких эффектов, как действие новой измененной волны на поле осциллирующего диполя. Мы предполагали, что силы, действующие на заряды атомов, определяются только
Ну а теперь мы увидим, что эта задача с помощью дифференциальных уравнений решается совсем просто. Конечно, дифференциальные уравнения затуманивают физическую причину возникновения преломления (как результата интерференции вновь излученных волн с первоначальными), но зато они упрощают теорию плотного материала. В этой главе сойдется вместе многое из того, что мы делали уже раньше. Практически мы уже получили все, что нам потребуется, так что по-настоящему новых идей в этой главе будет сравнительно немного. Поскольку вам может понадобиться освежить в памяти то, с чем мы здесь столкнемся, то в табл. 32.1 приводится список уравнений, которые я собираюсь использовать вместе со ссылкой на те места, где их можно найти. Во многих случаях из-за нехватки времени я не смогу снова останавливаться на физических аргументах,
Начну с напоминания о механизме преломления в газе. Мы предполагаем, что в единице объема газа находится
где
E=E0eiwt. (32.2)
С той же самой частотой будет осциллировать и перемещение, поэтому можно считать
Подставляя
А зная перемещение, можно вычислить ускорение
Теперь же мы пойдем другим путем. Индуцированный дипольный момент атома
Так как р пропорционально Е, то мы пишем
р=e0a(w)Е, (32,5) где a —
Подобный же ответ для движения электронов в атоме дает и квантовая механика, но с учетом следующих особенностей. У атомов есть несколько собственных частот, каждая из которых имеет свою диссипативную постоянную g. Кроме того, каждая гармоника имеет еще свою эффективную «силу», выражаемую в виде произведения поляризуемости при данной частоте на постоянную связи
Если число атомов в единице объема вещества равно
Р=e0Na(w)Е. (32.8)