Читаем Feynmann 7 полностью

Другими словами, когда на материал действует синусоидальное электрическое поле, оно индуцирует пропорциональный себе дипольный момент, причем константа пропорциональности а, как мы уже отмечали, зависит от частоты. При очень больших частотах a мала: реакция материала слабая. А вот при низких частотах реакция может быть очень сильной. Константа про­порциональности, кроме того, еще оказывается комплексной, т. е. поляризация не следует точно за всеми изменениями элект­рического поля, а в какой-то степени может быть сдвинута по фазе. Во всяком случае, электрическое поле вызывает в мате­риале поляризацию, пропорциональную его напряженности.

§ 2. Уравнения Максвелла в диэлектрике

Наличие в веществе поляризации означает, что там возни­кают поляризационные заряды и токи, которые необходимо учитывать в полных уравнениях Максвелла при нахождении полей. Сейчас мы собираемся решать уравнения Максвелла для случая, когда заряды и токи не равны нулю, но неявно опреде­ляются вектором поляризации. Нашим первым шагом должно быть явное нахождение плотности зарядов r и плотности тока j, усредненных по тому же самому малому объему, который имел­ся в виду при определении вектора Р. Потом необходимые нам значения r и j могут быть определены из поляризации. В гл. 10 (вып. 5) мы видели, что когда поляризация Р меняется от точки к точке, то возникает плотность зарядов:

rпол=-С·Р. (32.9)

В то время мы имели дело со статическими полями, но эта же формула справедлива и для переменных полей. Но когда Р изменяется со временем, заряды движутся, так что появляется поляризационный ток. Каждый из осциллирующих зарядов вносит в ток свой вклад, равный произведению его заряда qe на скорость v. Когда же таких зарядов в единице объема N штук, то они создают плотность тока j:

j=Nqev.

Ну а поскольку известно, что v=dx/dt, то j=Nqedx/dt, что как раз

равно dP/dt. Следовательно, при переменной поляризации воз­никает плотность тока

jпол=dP/dt (32.10)

Наша задача стала теперь простой и понятной. Мы пишем уравнения Максвелла с плотностями заряда и тока, определяе­мыми поляризацией Р посредством уравнений (32.9) и (32.10). (Предполагается, что других зарядов и токов в веществе нет.) Затем мы свяжем Р с Е формулой (32.5) и будем разрешать их относительно Е и В, отыскивая при этом волновое решение.

Но прежде чем приступить к решению, мне бы хотелось сде­лать одно замечание исторического характера. Первоначально Максвелл писал свои уравнения в форме, отличающейся от той, в которой они используются нами. И именно потому, что урав­нения писались в другой форме в течение многих лет (да и сей­час многими пишутся так), я постараюсь объяснить вам разни­цу. В те дни механизм диэлектрической проницаемости не был понятен с ясностью и полнотой. Не была ясна ни природа ато­мов, ни существование поляризации в веществе. Поэтому тогда не понимали, что С·P дает дополнительный вклад в плотность заряда р. Были известны только заряды, не связанные в атомах (такие, как заряды, текущие по проводу или возникающие при трении).

Сегодня же мы предпочитаем обозначать через r полную плотность зарядов, включая в нее и заряды, связанные с инди­видуальными атомами. Если назвать эту часть зарядов rпол, то можно написать

r=rпол+rдр,

где rдр— плотность зарядов, учтенная Максвеллом и относя­щаяся к другим зарядам, не связанным с определенными атомами. При этом мы бы написали

После подстановки rпол из (32.9) получаем

или

В плотность тока, фигурирующую в уравнениях Макс­велла для СXB, вообще говоря, тоже вносится вклад от связанных атомных электронных токов. Поэтому мы можем написать

j=jпол+jдр,

причем уравнение Максвелла приобретает вид

Используя уравнение (32.10), получаем

Теперь вы видите, что если бы мы определили новый вектор D

D=e0E+P, (32.14)

то два уравнения поля приняли бы вид

С·D=rдр (32.15)

и

Это и есть та форма уравнений, которую использовал Мак­свелл для диэлектриков. А вот и остальные два уравнения:

СXЕ=-дB/дt

и

С·B=0,

которые в точности совпадают с нашими.

Перед Максвеллом и другими учеными того времени вставала проблема магнетиков (за них мы вскоре примемся). Они ничего не знали о циркулирующих токах, ответственных за атомный магнетизм и поэтому, в плотности тока утеряли еще одну часть. Вместо уравнения (32.16) они на самом деле писали

где Н отличается от e0с2В, так как последнее учитывает эффекты атомных токов. (При этом j' представляет то, что осталось от то­ков.) Таким образом, у Максвелла было четыре полевых век­тора: Е, D, В и Н, причем в D и Н скрывалось то, на что он не обратил внимания,— процессы, происходящие внутри вещест­ва. Уравнения, написанные в таком виде, вы встретите во мно­гих местах.

Чтобы решить их, необходимо как-то связать D и Н с дру­гими полями, поэтому зачастую писали

D =eE

и

В=mH. (32.18)

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки