Читаем Feynmann 7 полностью

Теперь можно надеяться, что выражение (32.27) должно давать показатель преломления и для плотных материалов. Но по некоторым причинам оно нуждается в модификации. Во-первых, при выводе этого уравнения предполагалось, что поля­ризованное поле, действующее на каждый из атомов,— это поле Ех. Однако такое предположение неверно, поскольку в плотном материале существуют и другие поля, создаваемые соседними атомами, которые могут быть сравнимы с Ех. Анало­гичную задачу мы уже рассматривали при изучении статических полей в диэлектрике (см. гл. 11, вып. 5). Вы, вероятно, помните, что мы нашли поле, действующее на отдельный атом, представив его сидящим в сферической полости в окружающем диэлектрике. Поле в такой полости (мы назвали его локальным) увеличивается по сравнению со средним полем Е на величину Р/3e0. (Не за­будьте, однако, что этот результат, строго говоря, справедлив только для изотропного материала, а также в случае куби­ческого кристалла.)

Те же рассуждения верны и для электрического поля в вол­не, но до тех пор, пока длина ее много больше расстояния между атомами. При таком ограничении

Именно это локальное поле следует использовать вместо Е в (32.8), т. е. это выражение должно быть переписано следую­щим образом:

Р =e0NaЕлок. (32.29)

Подставляя теперь Елок из формулы (32.28), находим

или

Иными словами, Р для плотного материала все еще пропорцио­нальна Е (для синусоидального поля). Однако константа про­порциональности будет уже e0/Na/[1-(Na/3)], а не e0Nallfa, как раньше. Таким образом, нам нужно поправить формулу (32.25):

Более удобно переписать это в виде

который алгебраически эквивалентен прежнему. Это и есть известная формула Клаузиуса — Моссотти.

В плотном материале возникает и другое усложнение. По­скольку атомы расположены слишком тесно, они сильно взаимо­действуют друг с другом. Поэтому внутренние гармоники осцил­ляции изменяются. Собственные частоты атомных осцилляций размазываются этими взаимодействиями и обычно весьма сильно подавляются ими, а коэффициент трения становится очень боль­шим. Таким образом, все w0 и g твердого вещества будут дру­гими, чем для свободных атомов. С этой оговоркой мы все-таки можем представлять а, по крайней мере приближенно, уравнением (32.7), так что

Наконец, последнее усложнение. Если плотный материал представляет собой смесь нескольких компонент, то каждая из них дает свой вклад в поляризацию. Полная a будет суммой вкладов различных компонент смеси [за исключением неточ­ности приближения локального поля в упорядоченных кри­сталлах, т. е. выражения (32.28) — эффекты, которые мы обсуж­дали при разборе сегнетоэлектриков]. Обозначая через nj число атомов каждой компоненты в единице объема, мы должны заменить формулу (32.32) следующей:

где каждая aj будет определяться выражением типа (32.7). Выражение (32.34) завершает нашу теорию показателя прелом­ления. Величина 3(n2-1)/(n2+2) задается комплексной функ­цией частоты, каковой является средняя атомная поляризуе­мость a(w). Точное вычисление a(w) (т. е. нахождение fk, gk и w0k) для плотного вещества — одна из труднейших задач квантовой механики. Это было сделано только для нескольких особенно простых веществ.

§ 4. Комплексный показатель преломления

Обсудим теперь следствия нашего результата (32.33). Прежде всего обратите внимание на то, что a — комплексное число, так что показатель преломления n тоже оказывается комплексным. Что это означает? Давайте возьмем и запишем n в виде веществен­ной и мнимой частей:

где nR и njвещественные функции w. Мы написали inj с отрицательным знаком, так что nj для обычных оптических материалов будет положительной величиной. (Для обычных оптически неактивных материалов, которые не служат сами источниками света, как это происходит у лазеров, gположитель­ное число, а это делает мнимую часть n отрицательной.) Наша: плоская волна запишется теперь через n следующим образом:

Ех0е-iw(t-nz/c).

Если подставить n в виде выражения (32.35), то мы получим

и с увеличением z она экспоненциально убывает. График напря­женности электрического поля как функции от z в некоторый момент времени и для nI» nR/2p показан на фиг. 32.1.

Фиг. 32.1. График поля Ех в некоторый момент t при nI»nR2/p.

Мнимая часть показателя преломления из-за потерь энергии в атомных осцилляторах приводит к ослаблению волны. Интенсивность волны пропорциональна квадрату амплитуды, так что

Интенсивность ~е-2wnIz/c.

Часто это записывается как

Интенсивность ~е-bz,

где b=2wnI/с — коэффициент поглощения. Таким образом, в уравнении (32.33) содержится не только теория показателя преломления вещества, но и теория поглощения им света.

В тех материалах, которые мы обычно считаем прозрачными, величина c/wnI, имеющая размерность длины, оказывается гораздо больше толщины материала.

§ 5. Показатель преломления смеси

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука