Если на электрон не действует никакая восстанавливающая сила, но сопротивление его движению все же остается, то уравнение движения электрона отличается от (32.1) только отсутствием члена w20
Это только вклад от электронов проводимости, которые, как мы думаем, играют в металлах главную роль.
Но теперь мы даже знаем, какой нам взять величину g, ибо она связана с проводимостью металла. В гл. 43 (вып. 4) мы обсудили связь проводимости металлов с диффузией свободных электронов в кристалле. Электроны движутся по ломаному пути от одного соударения до другого, а между этими толчками они летят свободно, за исключением ускорения из-за какого-то среднего электрического поля (фиг. 32.2).
Там же, в гл. 43 (вып. 4), мы нашли, что средняя скорость дрейфа равна просто произведению ускорения на среднее время между соударениями t. Ускорение равно
vдрейф=(qeE/m)t. (32.39)
В этой формуле поле
g=1/t (32.40)
Несмотря на то что мы не можем с легкостью измерять непосредственно t, можно определять его, измеряя проводимость металла. Экспериментально обнаружено, что электрическое поле Е порождает в металлах ток с плотностью j, пропорциональной Е (для изотропного материала, конечно):
причем постоянная пропорциональности s называется
В точности то же самое мы ожидаем из выражения (32.39),
если положить
j=Nqevдрейф,
тогда
Таким образом, t, а следовательно, и
где
Это и есть известная формула для показателя преломления в металлах.
§ 7. Низкочастотное и высокочастотное приближения; глубина скин-слоя и плазменная частота
Наш результат для показателя преломления в металлах —формула (32.42) — предсказывает для распространения волн с разными частотами совершенно различные характеристики. Прежде всего давайте посмотрим, что получается при
Возведением в квадрат можно проверить, что
таким образом, для низких частот
Вещественная и мнимая части
Запишем это в виде
е-z/d, (32.47)
где d — это то расстояние, на котором амплитуда волны уменьшается в е=2,72 раза, т. е. приблизительно в 3 раза. Амплитуда такой волны, как функция от
Поскольку электромагнитные волны проникают в глубь металла только на это расстояние, величина d называется
Но что все-таки мы понимаем под «низкими» частотами? Взглянув на уравнение (32.42), мы видим, что его можно приближенно заменить уравнением (32.44), только когда wt много меньше единицы и
w<<1/t
и
w<0. (32.49)
Давайте посмотрим, какие частоты соответствуют этому приближению для такого типичного металла, как медь. Для вычисления t воспользуемся уравнением (32.43), а для вычисления s/e0 — известными значениями s и e0. Справочник дает нам такие данные:
s=5,76·107 (ом·м)-1,
Атомный вес = 63,5 г,
Плотность = 8,9
Число Авогадро=6,02·1023.
Если мы предположим, что на каждый атом приходится по одному свободному электрону, то число электронов в кубическом метре будет равно
N=8,5·1028 м
Используя далее
qe=1,6·10-19