Читаем Feynmann 7 полностью

Прежде всего я напомню вам об удобном способе описания синусоидальных плоских волн, которым мы пользовались в гл. 36 (вып. 3). Любая компонента поля в волне (возьмем, на­пример, Е) может быть записана в форме

E=E0ei(wt-k·r), (33.6)

где Е — амплитуда поля в точке г (относительно начала коор­динат) в момент t. Вектор k указывает направление распростра­нения волны, а его величина |k|=k=2pl равна волновому числу. Фазовая скорость волны vфаз=w/k для света в материале с показателем n будет равна c/n, поэтому

k=wn/c. (33.7)

Предположим, что вектор k направлен по оси z; тогда k·r будет просто хорошо знакомым нам kz. Для вектора k в любом другом направлении z следует заменить на rk расстояние от начала в направлении вектора k, т. е. kz мы должны заменить на krk, что как раз равно k·r (фиг. 33.2).

Фиг. 33.2. Фаза волны в точке Р, распространяющейся в направ­лении k, равна (wt-k·r).

Таким образом, запись (33.6) является удобным представлением волны, идущей в любом направлении.

Разумеется, при этом мы должны помнить, что

k·r=kxx+kyy+k:zz,

где kx, ky и kz компоненты вектора k по трем осям. Мы уже отмечали однажды, что на самом деле величины (w, kx, ky, kz) образуют четырехвектор и что его скалярное произведение на (t, x, у, z) является инвариантом. Таким образом, фаза волны есть инвариант и формулу (33.6) можно записать в виде

Однако сейчас нам такие хитрости не понадобятся.

Для синусоидального по­ля Е, подобного выражению (33.6), производная dE/дt это то же самое, что и iwE, a дЕ/дх — то же, что и ikxE, и аналогично для остальных компо­нент. Вы видите, чем удобна форма (33.6): когда мы работаем с дифференциальными уравнениями, то дифференцирование заменяется простым умножением. Другое полезное качество состоит в том, что операция С=(д/дx), (д/ду), (д/дz) заменяется тремя умножениями (-ikx,-iky , -ikz). Но эти три множителя преобразуются как компоненты вектора k, так что оператор С заменяется умножением на

Правило остается справедливым для операции С в любой ком­бинации, будь то градиент, дивергенция или ротор. Например, z-компонента СXЕ равна

Если и Еу и Ех изменяются как e-ik·r, то мы получаем

-ikxEy+ikyEx,

что представляет, как вы видите, z-компоненту —ikXЕ.

Таким образом, мы получили очень полезный общий закон, что в любом случае, когда вам нужно взять градиент от вектора, который изменяется, как волна в трехмерном пространстве (а они в физике играют важную роль), эту операцию вы можете проделать быстро и почти без всяких раздумий, если вспомните, что оператор С эквивалентен умножению на —ik.

Например, уравнение Фарадея

СXЕ=дB/дt

превращается для волны в

— ikXЕ=-iwB. Оно говорит, что

В=kXE/w. (33.9)

Это соответствует результату, найденному ранее для волн в пу­стом пространстве, т. е. что вектор В в волне направлен под прямым углом к вектору Е и направлению распространения волны. (В пустом пространстве w/k=с.) Знак в уравнении (33.9) вы можете проверить, исходя из того, что k является на­правлением вектора Пойнтинга S=e0c2(EXВ).

Если вы примените то же самое правило к другим уравне­ниям Максвелла, то снова получите результаты последней главы, в частности

Но раз уже это известно нам, давайте не будем проделывать все сначала.

Если вы хотите поразвлечься, можете попытаться решить та­кую устрашающую задачу (в 1890 г. она предлагалась студен­там на выпускных экзаменах): решите уравнения Максвелла для плоской волны в анизотропном кристалле, т. е. когда поля­ризация Р связана с электрическим полем Е через тензор поля­ризуемости. Конечно, в качестве ваших осей вы выберете глав­ные оси тензора, так что связи при этом упростятся (тогда Рх=aaЕх, Ру=abЕу, a Pz=acEz), но направление волны и ее поляризация пусть останутся произвольными. Вы должны найти соотношение между Е и В и определить, как изменяется k с направлением распространения волны и ее поляризацией. После этого вам будет понятна оптика анизотропного кристалла. Лучше начать с более легкого случая дважды лучепреломляющего кристалла, подобного турмалину, для которого два коэффи­циента поляризуемости равны между собой (например, ab=ac), и попытаться понять, почему, когда мы смотрим через такой кристалл, мы видим два изображения. Если это вам удастся, тогда испытайте свои силы на более трудном случае, когда все три а различны. После этого вам уже будет ясен уровень ваших знаний — знаете ли вы столько же, сколько студент, заканчи­вавший университет в 1890 г. Но мы с вами в этой главе будем рассматривать только изотропные вещества.

Из опыта вам известно, что когда на границу раздела двух материалов, скажем воздуха и стекла или воды и бензина, попадает плоская волна, то возникают как отраженная, так и преломленная волны.

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки