Читаем Feynmann 7 полностью

Я попытался дать вам качественные объяснения диамагне­тизма и парамагнетизма, однако хочу тут же внести поправку и сказать, что с точки зрения классической механики честным путем понять магнитные эффекты невозможно. Подобные маг­нитные эффекты — явления целиком квантовомеханические. Тем не менее привести некоторые «правдоподобные» классические рассуждения и дать вам представление о том, как здесь все происходит, все-таки небесполезно.

Попробуем встать на этот путь. Можно приводить разные фи­зические аргументы и строить догадки о том, что происходит с веществом, однако все эти аргументы будут в той или иной степени «незаконными», так как в любом из магнитных явлений весьма существенную роль играет квантовая механика. С другой стороны, бывают такие системы, подобные плазме или скопле­нию множества свободных электронов, где электроны все же живут по законам классической механики. При таких обстоя­тельствах некоторые из теорем классического магнетизма будут очень полезны. Кроме того, классические рассуждения полезны еще и по историческим причинам: ведь пока люди еще не могли понять глубокий смысл и поведение магнитных материалов, они пользовались классическими аргументами. Так что клас­сическая механика все же способна дать нам полезные сведения. И только если стремиться быть совсем честным, то надо отложить изучение магнетизма до тех пор, пока вы не пройдете квантовую механику.

А мне все-таки не хочется ждать так долго ради того, чтобы понять такую простую вещь, как диамагнетизм. Для целого ряда полуобъяснений происходящего можно ограничиться клас­сической механикой, сознавая, однако, что наши доводы на самом деле нуждаются в квантовомеханическом подкреплении.

§ 2. Магнитные моменты и момент количества движения

Первая теорема, которую мы хотим доказать в классической механике, гласит: если электрон движется по круговой орбите (например, крутится вокруг ядра под действием центральных сил), то менаду магнитным моментом и моментом количества движения существует определенное соотношение. Обозначим через J момент количества движения, а через m — магнитный момент электрона на орбите. Величина момента количества движения равна произведению массы электрона на скорость и на радиус (фиг. 34.2). Он направлен перпендикулярно плоскости орбиты:

J=mvr. (34.1)

Фиг. 34.2. Для любой круговой орбиты магнитный момент m равен произведению q!2m на момент количества движения J.

(Хотя эта формула и нерелятивистская, но для атома она должна быть достаточно хороша, ибо у захваченного на орбиту элект­рона отношение v/c в общем случае равно по порядку величины е2/hc=1/137, или около 1%.)

Магнитный момент той же самой орбиты равен произведению тока на площадь (см. гл. 14, § 5, вып. 5). Ток равен положи­тельному заряду, проходящему в единицу времени через любую точку на орбите, т. е. произведению заряда q на частоту вра­щения. А частота равна скорости, поделенной на периметр орбиты, так что

I=q(v/2pr). Так как площадь равна pr2, то магнитный момент будет

m=qvr/2 (34.2)

Он тоже направлен перпендикулярно плоскости орбиты. Таким образом, J и m имеют одинаковое направление:

m=(q/2m)J (орбиты). (34.3)

Их отношение не зависит ни от скорости, ни от радиуса. Для любой частицы, движущейся по круговой орбите, магнитный момент равен произведению q/2m на момент количества движе­ния. Для электрона, заряд которого отрицателен (обозначим его через -qe),

m=-(qe/2m)J (для электрона на орбите). (34.4)

Вот что получается в классической физике, и совершенно удивительно, что то же самое справедливо и в квантовой меха­нике. Это один из правильных выводов. Однако если развивать его дальше по пути классической физики, то вы натолкнетесь на такие места, где он даст неправильные ответы; разобраться же потом, какие результаты верны, а какие неверны, — целое дело. Уж лучше я сразу скажу, что в квантовой механике верно в общем случае. Прежде всего соотношение (34.4) остается вер­ным для орбитального движения; однако это не единственное место, где мы встречаемся с магнетизмом. Электрон, кроме того, совершает еще вращение вокруг собственной оси (подобное вращению Земли вокруг ее оси), и в результате этого вращения у него возникает момент количества движения и магнитный мо­мент. Но по чисто квантовомеханическим причинам (классиче­ское объяснение этого совершенно отсутствует) отношение m к J для собственного вращения (спина) электрона в два раза больше, чем для орбитального движения крутящегося элект­рона:

m=-(qe/m)J (спин электрона). (34.5)

Перейти на страницу:

Похожие книги

Гиперпространство
Гиперпространство

Инстинкт говорит нам, что наш мир трехмерный. Исходя из этого представления, веками строились и научные гипотезы. По мнению выдающегося физика Мичио Каку, это такой же предрассудок, каким было убеждение древних египтян в том, что Земля плоская. Книга посвящена теории гиперпространства. Идея многомерности пространства вызывала скепсис, высмеивалась, но теперь признается многими авторитетными учеными. Значение этой теории заключается в том, что она способна объединять все известные физические феномены в простую конструкцию и привести ученых к так называемой теории всего. Однако серьезной и доступной литературы для неспециалистов почти нет. Этот пробел и восполняет Мичио Каку, объясняя с научной точки зрения и происхождение Земли, и существование параллельных вселенных, и путешествия во времени, и многие другие кажущиеся фантастическими явления.

Мичио Каку

Физика / Образование и наука
Что такое полупроводник
Что такое полупроводник

Кто из вас, юные читатели, не хочет узнать, что будет представлять собой техника ближайшего будущего? Чтобы помочь вам в этом, Детгиз выпускает серию популярных брошюр, в которых рассказывает о важнейших открытиях и проблемах современной науки и техники.Думая о технике будущего, мы чаще всего представляем себе что-нибудь огромное: атомный межпланетный корабль, искусственное солнце над землей, пышные сады на месте пустынь.Но ведь рядом с гигантскими творениями своих рук и разума мы увидим завтра и скромные обликом, хоть и не менее поразительные технические новинки.Когда-нибудь, отдыхая летним вечером вдали от города, на зеленом берегу реки, вы будете слушать музыку через «поющий желудь» — крохотный радиоприемник, надетый прямо на ваше ухо. Потом стемнеет. Вы вынете из кармана небольшую коробку, откроете крышку, и на матовом экране появятся бегущие футболисты. Телевизор размером с книгу!В наш труд и быт войдет изумительная простотой и совершенством автоматика. Солнечный свет станет двигать машины.Жилища будут отапливаться... морозом.В городах и поселках зажгутся вечные светильники.Из воздуха и воды человек научится делать топливо пластмассы, сахар...Создать все это помогут новые для нашей техники вещества — полупроводники.О них эта книжка.

Глеб Анфилов , Глеб Борисович Анфилов

Детская образовательная литература / Физика / Техника / Радиоэлектроника / Технические науки