Читаем Feynmann 7 полностью

Я попытался дать вам качественные объяснения диамагне­тизма и парамагнетизма, однако хочу тут же внести поправку и сказать, что с точки зрения классической механики честным путем понять магнитные эффекты невозможно. Подобные маг­нитные эффекты — явления целиком квантовомеханические. Тем не менее привести некоторые «правдоподобные» классические рассуждения и дать вам представление о том, как здесь все происходит, все-таки небесполезно.

Попробуем встать на этот путь. Можно приводить разные фи­зические аргументы и строить догадки о том, что происходит с веществом, однако все эти аргументы будут в той или иной степени «незаконными», так как в любом из магнитных явлений весьма существенную роль играет квантовая механика. С другой стороны, бывают такие системы, подобные плазме или скопле­нию множества свободных электронов, где электроны все же живут по законам классической механики. При таких обстоя­тельствах некоторые из теорем классического магнетизма будут очень полезны. Кроме того, классические рассуждения полезны еще и по историческим причинам: ведь пока люди еще не могли понять глубокий смысл и поведение магнитных материалов, они пользовались классическими аргументами. Так что клас­сическая механика все же способна дать нам полезные сведения. И только если стремиться быть совсем честным, то надо отложить изучение магнетизма до тех пор, пока вы не пройдете квантовую механику.

А мне все-таки не хочется ждать так долго ради того, чтобы понять такую простую вещь, как диамагнетизм. Для целого ряда полуобъяснений происходящего можно ограничиться клас­сической механикой, сознавая, однако, что наши доводы на самом деле нуждаются в квантовомеханическом подкреплении.

§ 2. Магнитные моменты и момент количества движения

Первая теорема, которую мы хотим доказать в классической механике, гласит: если электрон движется по круговой орбите (например, крутится вокруг ядра под действием центральных сил), то менаду магнитным моментом и моментом количества движения существует определенное соотношение. Обозначим через J момент количества движения, а через m — магнитный момент электрона на орбите. Величина момента количества движения равна произведению массы электрона на скорость и на радиус (фиг. 34.2). Он направлен перпендикулярно плоскости орбиты:

J=mvr. (34.1)

Фиг. 34.2. Для любой круговой орбиты магнитный момент m равен произведению q!2m на момент количества движения J.

(Хотя эта формула и нерелятивистская, но для атома она должна быть достаточно хороша, ибо у захваченного на орбиту элект­рона отношение v/c в общем случае равно по порядку величины е2/hc=1/137, или около 1%.)

Магнитный момент той же самой орбиты равен произведению тока на площадь (см. гл. 14, § 5, вып. 5). Ток равен положи­тельному заряду, проходящему в единицу времени через любую точку на орбите, т. е. произведению заряда q на частоту вра­щения. А частота равна скорости, поделенной на периметр орбиты, так что

I=q(v/2pr). Так как площадь равна pr2, то магнитный момент будет

m=qvr/2 (34.2)

Он тоже направлен перпендикулярно плоскости орбиты. Таким образом, J и m имеют одинаковое направление:

m=(q/2m)J (орбиты). (34.3)

Их отношение не зависит ни от скорости, ни от радиуса. Для любой частицы, движущейся по круговой орбите, магнитный момент равен произведению q/2m на момент количества движе­ния. Для электрона, заряд которого отрицателен (обозначим его через -qe),

m=-(qe/2m)J (для электрона на орбите). (34.4)

Вот что получается в классической физике, и совершенно удивительно, что то же самое справедливо и в квантовой меха­нике. Это один из правильных выводов. Однако если развивать его дальше по пути классической физики, то вы натолкнетесь на такие места, где он даст неправильные ответы; разобраться же потом, какие результаты верны, а какие неверны, — целое дело. Уж лучше я сразу скажу, что в квантовой механике верно в общем случае. Прежде всего соотношение (34.4) остается вер­ным для орбитального движения; однако это не единственное место, где мы встречаемся с магнетизмом. Электрон, кроме того, совершает еще вращение вокруг собственной оси (подобное вращению Земли вокруг ее оси), и в результате этого вращения у него возникает момент количества движения и магнитный мо­мент. Но по чисто квантовомеханическим причинам (классиче­ское объяснение этого совершенно отсутствует) отношение m к J для собственного вращения (спина) электрона в два раза больше, чем для орбитального движения крутящегося элект­рона:

m=-(qe/m)J (спин электрона). (34.5)

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука