Читаем Feynmann 8 полностью

Пусть у нас была бы только частица а; тогда у нее была бы определенная амплитуда рас­сеяния в направлении 1, скажем <1|а>. А частица b сама по себе обладала бы амплитудой <2|b> того, что приземление произойдет в направлении 2. Если частицы не тождественны, то амплитуда того, что в одно и то же время произойдут оба рассеяния, равна попросту произведению

<1|а><2|b>. Вероятность же такого события тогда равна

|a><2|b>|2 что также равняется

|<1|а>|2|<2|b>|2. Чтобы сократить запись, мы иногда будем полагать

<1|а>=а1, <2|b>=b2.

Тогда вероятность двойного рассеяния есть

|a1|2|b2|2.

Могло бы также случиться, что частица b рассеялась в на­правлении 1, а частица а —в направлении 2. Амплитуда та­кого процесса была бы равна

<2|а><1|b>, а вероятность такого события равна

|<2|а><1|b>|2=|a2|2|b1|2.

Представим себе теперь, что имеется пара крошечных счет­чиков, которые ловят рассеянные частицы. Вероятность Р2 того, что они засекут сразу обе частицы, равна просто

P2=|a1|2|b2|2+|a2|2|b1|2. (2.3)

Положим теперь, что направления 1 и 2 очень близки. Бу­дем считать, что а с изменением направления меняется плавно, тогда а1 и а2 при сближении направлений 1 и 2 должны приближаться друг к другу. При достаточном сближении амплитуды а1 и а2 сравняются, и можно будет положить а1=а2 и обозна­чить каждую из них просто а; точно так же мы положим и b1=b2=b. Тогда получим

Р2=2|а|2|b|2. (2.4)

Теперь, однако, предположим, что а и bтождественные бозе-частицы. Тогда процесс перехода а в состояние 1, а b в состояние 2 нельзя будет отличить от обменного процесса, в ко­тором b переходит в 2, а а — в 1. В этом случае амплитуды двух различных процессов могут интерферировать. Полная амплиту­да того, что в каждом из счетчиков появится по частице, равна

<1| а><2|b>+<2|а><1|b>, (2.5)

и вероятность того, что ими будет зарегистрирована пара, дается квадратом модуля этой амплитуды:

Р2= |а1b2+a2b1|2=4|a|2|b|2(2.6)

Б итоге выясняется, что вдвое более вероятно обнаружить две идентичные бозе-частицы, рассеянные в одно и то же состоя­ние, по сравнению с расчетом, проводимым в предположении, что частицы различны.

Хотя мы считали, что частицы наблюдаются двумя разными счетчиками,— это несущественно. В этом можно убедиться следующим образом. Вообразим себе, что оба направления 1 и 2 привели бы частицы в один и тот же маленький счетчик, кото­рый находится на каком-то расстоянии. Мы определим направ­ление 1, говоря, что оно смотрит в элемент поверхности dS1 счетчика. Направление же 2 смотрит в элемент поверхности dS2 счетчика. (Считается, что счетчик представляет собой по­верхность, поперечную к линии рассеяния.) Теперь уже нельзя говорить о вероятности того, что частица направится точно в каком-то направлении или в определенную точку пространства. Это невозможно — шанс зарегистрировать любое фиксирован­ное направление равен нулю. Если уж нам хочется точности, то нужно так определить наши амплитуды, чтобы они давали ве­роятность попадания на единицу площади счетчика. Пусть у нас была бы только одна частица я; она бы имела определенную амплитуду рассеяния в направлении 1. Пусть<1|а>=a1 определяется как амплитуда того, что а рассеется в единицу площади счетчика, расположенного в направлении 1. Иными словами, мы выбираем масштаб а1 и говорим, что она «нормирована» так, что вероятность того, что а рассеется в элемент площади dS1 равна

Если вся площадь нашего счетчика DS и мы заставим dS1 странст­вовать по этой площади, то полная вероятность того, что ча­стица а рассеется в счетчик, будет

Как и прежде, мы хотим считать счетчик настолько малым, что амплитуда а1 на его поверхности не очень меняется; зна­чит, а1 будет постоянным числом, и мы обозначим его через а. Тогда вероятность того, что частица а рассеялась куда-то в счетчик, равна

Таким же способом мы придем к выводу, что частица b (когда она одна) рассеивается в элемент площади dS2 с ве­роятностью

(Мы говорим dS2, а не dS1 в расчете на то, что позже ча­стицам а и b будет разрешено двигаться в разных направле­ниях.) Опять положим b2 равным постоянной амплитуде b; тогда вероятность того, что частица b будет зарегистрирована счетчиком, равна

Когда же имеются две частицы, то вероятность рассеяния а в dS1 и b в dS2 будет

Если нам нужна вероятность того, что обе частицы (и а, и b) попали в счетчик, мы должны будем проинтегрировать dS1 и dS2 по всей площади DS; получится

Заметим, кстати, что это равно просто ра·рb в точности так, как если бы мы предположили, что частицы а и b действуют независимо друг от друга.

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг