Читаем Feynmann 8 полностью

где |а|2 — вероятность того, что он испустил бы фотон, если бы не было этих n фотонов. Мы уже говорили об этих правилах немного по-иному в гл. 42 (вып. 4). Выражение (2.29) утверждает, что вероятность того, что атом поглотит фотон и совершит переход в состояние с более высокой энергией, пропорциональ­на интенсивности света, освещающего его. Но, как впервые указал Эйнштейн, скорость, с которой атом переходит в более низкое энергетическое состояние, состоит из двух частей. Есть вероятность |а|2 того, что он совершит самопроизвольный переход, и есть вероятность вынужденного перехода n|а|2, пропорциональная интенсивности света, т. е. числу имеющихся фотонов. Далее, как заметил Эйнштейн, коэффициенты погло­щения и вынужденного испускания равны между собой и свя­заны с вероятностью самопроизвольного испускания. Здесь же мы выяснили, что если интенсивность света измеряется ко­личеством имеющихся фотонов (вместо того, чтобы пользоваться энергией в единице объема или в секунду), то коэффициенты поглощения, вынужденного испускания и самопроизвольного испускания все равны друг другу. В этом смысл соотношения между коэффициентами А и В, выведенного Эйнштейном [см. гл. 42 (вып. 4), соотношение (42.18)].

§ 5. Спектр абсолютно черного тела

Мы хотим теперь использовать наши правила для бозе-частиц, чтобы еще раз получить спектр излучения абсолютно черного тела [см. гл. 42 (вып. 4)]. Мы сделаем это, подсчитав, сколько фотонов содержится в ящике, если излучение нахо­дится в тепловом равновесии с атомами в ящике. Допустим, что каждой световой частоте со соответствует определенное количество N атомов с двумя энергетическими состояниями, отличающимися на энергию DЕ =hw (фиг. 2.6).

Фиг. 2.6. Излучение и поглощение фотона с частотой w.

Состояние с меньшей энергией мы назовем «основным», с большей — «возбужденным». Пусть Nосн и Nвозб — средние числа атомов в основном и возбужденном состояниях; тогда для теплового равновесия при температуре Т из статистической механики следует

Каждый атом в основном состоянии может поглотить фотон и перейти в возбужденное состояние, и каждый атом в возбу­жденном состоянии может испустить фотон и перейти в основное состояние. При равновесии скорости этих двух процессов должны быть равны. Скорости пропорциональны вероятности событий и количеству имеющихся атомов. Пусть nсреднее число фотонов, находящихся в данном состоянии с частотой w. Тогда скорость поглощения из этого состояния есть Nocнn|а|2, а скорость испускания в это состояние есть Nвозб(n+1)|а|2, Приравнивая друг другу эти две скорости, мы получаем

Сопоставляя это с (2.30), имеем

Отсюда найдем

Это и есть среднее число фотонов в любом состоянии с частотой w при тепловом равновесии в полости. Поскольку энергия каждого фотона hw, то энергия фотонов в данном состоянии

есть nhw, или

Кстати говоря, мы уже получали подобное выражение в другой связи [см. гл. 41 (вып. 4), формула (41.15)]. Вспомните, что для гармонического осциллятора (скажем, грузика на пружинке) квантовомеханические уровни энергии находятся друг от друга на равных расстояниях hw, как показано на фиг. 2.7.

Фиг. 2.7. Уровни энергии гармонического осциллятора.

 

Перейти на страницу:

Похожие книги

Статьи и речи
Статьи и речи

Труды Максвелла Доклад математической и физической секции Британской ассоциации (О соотношении между физикой и математикой) Вводная лекция по экспериментальной физике (Значение эксперимента в теоретическом познании) О математической классификации физических величин О действиях на расстоянии Фарадей Молекулы О «Соотношении физических сил» Грова О динамическом доказательстве молекулярного строения тел Атом Притяжение Герман Людвиг Фердинанд Гельмгольц Строение тел Эфир Фарадей О цветовом зрении Труды о Максвелле М. Планк. Джемс Клерк Максвелл и его значение для теоретической физики в Германии А. Эйнштейн. Влияние Максвелла на развитие представлений о физической реальности Н. Бор. Максвелл и современная теоретическая физика Д. Турнер. Максвелл о логике динамического объяснения Р.Э. Пайерлс. Теория поля со времени Максвелла С.Дж. Вруш. Развитие кинетической теории газов (Максвелл) А.М. Ворк. Максвелл, ток смещения и симметрия Р.М. Эванс. Цветная фотография Максвелла Э. Келли. Уравнения Максвелла как свойство вихревой губки  

Джеймс Клерк Максвелл , Н. А. Арнольд

Физика / Проза прочее / Биофизика / Прочая научная литература / Образование и наука
«Безумные» идеи
«Безумные» идеи

Книга И. Радунской «"Безумные" идеи» утверждает доминирующую роль «безумных» идей. Не планомерное, постепенное развитие мысли, а скачки в познании, принципиально новые углы зрения — вот что так эффективно способствует прогрессу. Именно от «безумных» идей ученые ждут сегодня раскрытия самых загадочных тайн мироздания.О наиболее парадоксальных, дерзких идеях современной физики — в области элементарных частиц, физики сверхнизких температур и сверхвысоких давлений, квантовой оптики, астрофизики, теории относительности, квантовой электроники, космологии и о других аспектах современного естествознания — рассказывает книга «"Безумные" идеи».Книга «"Безумные" идеи» была переведена на венгерский, немецкий, французский, чешский, японский языки. В Японии за полтора года она была переиздана девять раз.

Ирина Львовна Радунская

Физика
Для юных физиков
Для юных физиков

Вашему вниманию предлагается вторая книга из составленной нами серии некогда широко известных произведений популяризатора науки и педагога Перельмана Я. И. Первой в серии стала книга «Для юных математиков. Веселые задачи».Работа «Для юных физиков. Опыты и развлечения» предназначена совсем юным исследователям природы. По словам Перельмана Я. И., «…то, что может почерпнуть из нее читатель – еще не физика, а только преддверие к ней».Книга, которую Вы держите в руках, поможет расширить кругозор ребенка, позволит обогатиться новыми знаниями о природе и пробудит умение творчески мыслить. Здесь представлены легкие для выполнения опыты, которые можно проделать с окружающими нас предметами. Забавные истории, увлекательные задачи, парадоксальные сопоставления помогут привить интерес к познанию окружающего мира.Материал написан в жанре занимательной науки, содержит кладезь полезных теоретических и практических знаний и предназначена для учащихся средней школы и их родителей, для учителей и всех тех, кто сохранил в себе способность удивляться окружающему нас миру.В книге представлены еще две работы автора: «Не верь своим глазам!» и «Развлечение со спичками».

Яков Исидорович Перельман

Развлечения / Детская образовательная литература / Физика / Книги Для Детей / Дом и досуг